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Abstract

In this work, we make a detailed study of the Fourier coefficients of cus-

pidal Siegel modular forms of degree 2. We derive a very general relation

between the Fourier coefficients that extends previous work in this direc-

tion by Andrianov, Kowalski-Saha-Tsimerman and others. The basis for

our relation is the dependence between values of global Bessel periods and

averages of Fourier coefficients. Consequently our relation applies also to

Bessel periods of more general automorphic forms on GSp4(A).

We use our relation to prove that cuspidal Siegel modular forms asso-

ciated to P-CAP representations (Saito-Kurokawa lifts with level) satisfy

the so-called Maass relations. This is the first result of this kind for Siegel

modular forms with respect to general congruence subgroups. Another

important corollary of our work is the existence of non-zero Fourier coeffi-

cients of the simplest form possible (often fundamental or primitive) for a

wide family of cuspidal Siegel modular forms of degree 2.

Finally, using classical methods, we are able to prove that paramodular

newforms of square-free level have infinitely many non-zero fundamental

Fourier coefficients. This result extends previous work by Saha in the full-

level case, and is especially interesting because of the paramodular con-

jecture connecting paramodular newforms of weight 2 and rational abelian

surfaces.
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Chapter 1

Introduction

This work is devoted to certain families of modular forms and their various

properties. Modular forms are one of those incredible objects that occur

almost throughout the whole of mathematics and join seemingly very dif-

ferent areas. We begin with some introductory sections. Our main results

are described in Section 1.4.

1.1 Beginnings of the theory of modular forms

Let Q be a quadratic form over Z in k variables, e.g.

Q(x1, . . . , xk) = a1x
2
1 + . . .+ akx

2
k .

Some of the most natural questions one might ask aboutQ are the following:

For which n ∈ N does Q(x1, . . . , xk) = n have a solution in Zk? What is

the minimal k we could take? Or, more generally, what is the number of

representations of n by Q,

rQ(n) := #{(x1, . . . , xk) ∈ Zk : Q(x1, . . . , xk) = n} ?

These kinds of questions drove Jacobi in the first half of the 19th century

to introduce the theta function

θ(z) =
∞∑

n=−∞

qn
2

, q = e2πiz, z ∈ C with Im z > 0 ,
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as θk(z) =
∑

n≥0 rk(n)qn, where rk(n) := rQ(n) for Q(x1, . . . , xk) = x2
1 +

. . .+ x2
k = n. In general, one associates to Q a theta series

ΘQ(z) =
∑

(x1,...,xk)∈Zk
qQ(x1,...,xk) =

∑
n≥0

rQ(n)qn .

Both θ and ΘQ are examples of modular forms of half-integral weight. For

classical results on rQ see for example [5], and for more detailed survey [56].

However, the term “modular form”, or “Modulform”, apparently intro-

duced by Klein, appears for the first time in the work of Hecke in 1924,

[11]. The adjective “modular” comes from modulus, one of invariants of

elliptic curves ([10]). Studies of isogenous elliptic curves and their modulus

led Eisenstein, Kronecker, Klein and other mathematicians of 19th century

to a discovery of modular curves, and from there to modular functions and

modular forms.

Modular forms are holomorphic complex valued functions defined on

the complex upper half-plane

H1 = {z ∈ C : Im z > 0} ,

that are invariant under the action of SL2(Z) or some congruence subgroup

Γ, and satisfy certain boundary conditions. This is enough to prove that

they admit a Fourier expansion,

f(z) =
∞∑
n=0

a(f, n)e2πinz .

One of the most fundamental cusp forms, modular forms that vanish at

cusps of SL2(Z) or Γ, is the modular discriminant

∆(z) = (2π)12

∞∑
n=1

τ(n)e2πinz = (2π)12e2πiz

∞∏
n=1

(1− e2πinz)24 ,

which is very closely related to the discriminant of an elliptic curve (cf.

[58]). It was extensively studied by Ramanujan, who noticed, among oth-

ers, that its Fourier coefficients are multiplicative. This fact was proven by

Mordell, and then generalised by Hecke. Hecke observed that the Fourier

coefficients a(f, n) of some modular forms, normalised so that a(f, 1) = 1,

could be interpreted as eigenvalues of certain averaging operators T (n) de-

fined on the space of modular forms, now called Hecke operators. The

multiplicativity of those implies multiplicativity of Fourier coefficients of
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Hecke eigenforms. A bit later, when Petersson introduced an inner prod-

uct on the space of cusp forms, it became clear that this space, classified

according to two parameters: weight k and level N , possesses a basis of

eigenforms for the Hecke operators T (n) with n coprime to the level N .

For fixed N and k such a basis is finite.

Together with development of this theory, more and more connections

with other areas of mathematics were observed. Hilbert, inspired by

Kronecker’s “Jugendtraum”, defined and explored modular forms invari-

ant under the action of the group SL2(OK) with OK the ring of integers of

a totally real field. Siegel went in another direction. Having been interested

in the number of representations of quadratic forms by integral quadratic

forms, i.e.

RQ(T ) := #{X ∈ Zm×n : tXQX = T} ,

he generalised the idea of Jacobi and introduced the Siegel upper half space1

Hn = {Z ∈ Cn×n : Z = Zt, ImZ positive definite}

and a theta series of degree n

Θ
(n)
Q (Z) =

∑
X∈Zm×n

e(tr (X tQXZ)) =
∑
T

RQ(T )e(tr (TZ))

defined onHn, where e(x) = e2πix, and Q ∈ 1
2
Zm×m, T ∈ 1

2
Zn×n are positive

semidefinite symmetric matrices with integers on the diagonal. Θ
(n)
Q is an

example of a Siegel modular form of degree n and weight m/2. Once again,

Fourier coefficients carry important arithmetic information! For results on

RQ see [56].

1.2 Fourier coefficients

We will properly define Siegel modular forms in a later chapter. To motivate

our research it will be enough to know that they are holomorphic complex

valued functions on Hn that are invariant under the action of Sp2n(Z) or

1This space is not as artificial as it may seem. It can be thought of as a set of all period
matrices of a Riemann surface of genus n, another subject of Siegel’s interests. Because
of this, Hn is also called the Siegel upper half plane of genus n, and the words “degree”
and “genus” related to the objects defined on it tend to be used interchangeably.
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its congruence subgroups, and therefore admit a Fourier expansion2

F (Z) =
∑

T=T t,T≥0
half-integral

a(F, T )e(tr (TZ)) ,

where T ∈ 1
2
Zn×n positive semidefinite with an integral diagonal. Already

looking at the Fourier expansion we can see that this more general situation

is much more complicated. In the classical situation, when n = 1, Fourier

coefficients are fairly well understood. The space of modular forms has a

basis consisting of Hecke eigenforms, whose coefficients are multiplicative

and can be identified with the eigenvalues of these operators. This immedi-

ately tells us that non-zero cusp forms that are eigenfunctions of the Hecke

operators must have their first coefficient non-zero. In the case n > 1, we

also have a good notion of Hecke operators which are normal with respect

to the Petersson inner product, and so their common eigenforms constitute

a basis of Siegel modular forms. This time, however, the Fourier coeffi-

cients are much more mysterious and the knowledge on Hecke eigenvalues

cannot guarantee their understanding. This happens already in the case

of modular forms of half-integral weight3, where we can only compare the

coefficients a(f,m) with m differing by a square of a prime. We face a very

similar situation when n = 2. We may vary the Fourier coefficients a(F, T )

in two ways: vertical, where the discriminant of the matrix T varies only

by a square, that is discT ∈ d(Z+)2 and a fundamental discriminant d is

fixed; or horizontal, where d itself varies. The action of Hecke operators

only provides a relation between Fourier coefficients belonging to the same

vertical class. However, it is important to have an information about a

single coefficient a(f,m) or a(F, T ), especially with m or discT square-

free. These Fourier coefficients carry important arithmetic information -

the square of their averages, when taken over a fixed discriminant, is pro-

portional to a central L-value. This link was first observed by Böcherer

[4], and then widely generalised - but proven in some special cases - by

Furusawa, Martin, Shalika, Gan, Gross, Prasad, Takloo-Bighash, Ryan,

Tornaria and others ([15], [16], [42], [47], [17], ...).

In this work we are occupied with the problem of characterising non-

zero Siegel modular forms of degree 2 by their Fourier coefficients. We often

2The boundary condition is implied immediately for n > 1 (Koecher’s theorem, [22]).
3In general, Hecke eigenforms of half-integral weight are not determined by their

Hecke eigenvalues (see for example [43], Example 3.4.7). However, if they belong to the
so-called Kohnen plus new space and have level 4N , where N is odd and square-free, it
suffices to know almost all Hecke eigenvalues, i.e. strong multiplicity one holds ([24]).
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restrict ourselves to eigenfunctions of Hecke operators4, and call them in

short Hecke eigenforms. One can take a strictly computational point of

view and be interested in the smallest set of Fourier coefficients of F that

asserts that F = 0. To make this question simpler one can look at the

coefficients modulo a prime p. In this setting the bound was first given

by Sturm [59] in 1984 for modular forms of degree 1. A bound for Siegel

modular forms of degree 2 was obtained much later, in [41] and [6], and

only in 2015 Richter and Raum [44] with a completely different method

provided a bound for a general degree n. All these results, however, rely on

certain conditions that do not cover all the cases. It is worth to notice here

that when n > 1, it is not at all clear how one should order the matrices

in the Fourier expansion and which quantity should be bounded. The

aforementioned results bound the diagonal entries of all those matrices.5

Our point of view is motivated by the great importance of an infinite

subset of Fourier coefficients, fundamental Fourier coefficients, in the the-

ory of Bessel models and L-functions. These are the coefficients a(F, T )

for which the discriminant of T is a fundamental discriminant. Their im-

portant role manifested first in a paper of Furusawa [14], who under an

assumption of non-vanishing of such a coefficient obtained a special value

result for an L-function for GSp4 ×GL2; later works on this topic built on

Furusawa’s result and proved analytic and arithmetic properties of various

related L-functions (see [49] for more details). At the same time funda-

mental Fourier coefficients seem to determine Siegel modular forms. The

first result in this direction was given by Saha [51] who proved that a non-

zero cusp form invariant under the action of Sp4(Z) is indeed determined

by its fundamental Fourier coefficients. If we look at the cusp forms that

are invariant only under the action of a smaller subgroup Γ of Sp4(Z), the

situation becomes much more complicated. Firstly, there are many groups

Γ that might be of interest, and secondly, the case when the level N is

divisible by a square provides many obstacles. The only known results

concern Siegel congruence subgroup of Sp4(Z) of square-free level N ([52],

[49] or Theorem 5.2.2). I obtain a similar result (Theorem 5.3.1) for an

important class of Siegel modular forms that are invariant under the ac-

tion of the paramodular subgroup - paramodular forms ; more on this in

Section 5.2, 4.4. The significance of paramodular forms comes from their

connection with abelian surfaces (paramodular conjecture) via the equality

of corresponding L-functions.

4We specify these Hecke operators in later chapters.
5This is still a finite set, because detT has to be non-negative.
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The non-vanishing result for fundamental Fourier coefficients of para-

modular forms mentioned above requires several ingredients for its proof,

the first of which is the existence of a non-vanishing primitive Fourier co-

efficient. This can be done using classical methods relating to the action

of Hecke operators on Fourier coefficients; however, a more natural way

to approach such problems is via the theory of Bessel models. This latter

approach relies crucially on interpreting modular forms and their Fourier

coefficients from a representation-theoretic point of view, which we describe

next.

1.3 Automorphic forms and representations

A stepping stone in the theory of modular forms was the discovery, first

by Gelfand and Fomin, that modular forms can be thought of as smooth

vectors of representations of a Lie group G on spaces of certain holomor-

phic functions on G that are left-invariant under a discrete subgroup Γ of

G - automorphic forms. Later, localising this idea to all the completions

of Q led to automorphic forms defined on the group G(A) of adelic points

of G. The right regular action of G(A) on these functions gives rise to

automorphic representations of G(A). In the case when G = GLn all such

representations are generic, and thus admit a Whittaker model. Vectors

in this model are basically Fourier coefficients of the automorphic forms

on GLn(A). The simplicity and uniqueness of this model is extremely

useful for studying cuspidal automorphic forms on GLn(A). Their space

decomposes into a direct sum of vector spaces of irreducible automorphic

representations. The celebrated multiplicity one result for GLn(A) states

that each such representation occurs at most once.6 Moreover, two cusp-

idal automorphic representations of GLn(A) are isomorphic if their local

components are isomorphic for all but a finite number of places.7

In the case when G = GSp2n, the representations at the infinite place

associated to holomorphic Siegel modular forms are not generic, and there-

fore a Whittaker model does not exist. A good substitute in the case n = 2

is a Bessel model ([36]). Such a model always exists ([26]) and, as we shall

see in Section 4.3, values of its vectors, Bessel periods, are also related

to Fourier coefficients. Curiously, if we focus on representations coming

6This statement was proven by Jacquet, Langlands [20] for n = 2 and independently
by Piatetski-Shapiro [32] and Shalika [57] for n > 2.

7The last statement is known as strong multiplicity one theorem, proven by Piatetski-
Shapiro [32] and Jacquet, Shalika [21].
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from Siegel modular forms of degree 2, the existence of a non-zero fun-

damental Fourier coefficient implies that multiplicity one for GSp4 follows

from Böcherer’s conjecture (cf. [48]). In this setting the multiplicity one

conjecture may be stated in terms of Hecke eigenvalues, i.e. if two Hecke

eigenforms have the same eigenvalues for the operators T (p) and T (p2) for

all primes p, then they must be proportional.

This is only one of the instances when switching between a represen-

tation theoretic structure and a classical language gives an insight into a

classical theory. Another important example of this interplay is the cele-

brated modularity theorem, which provides a relation - via the equality of

L-functions - between Hecke eigenvalues of certain modular forms and the

number of points on suitable elliptic curves over finite fields. This may be

also viewed as a special case of the Langlands functoriality conjecture.

Our work provides many other examples when using the representation

theoretic structure of number theoretic objects and switching between these

two worlds turned out to be very beneficial.

1.4 Main results

Henceforth we focus on Siegel cusp forms F of degree 2 (n = 2). One

of the main aims of this thesis was to assure the existence of non-zero

Fourier coefficients a(F, T ) with discriminant of T simplest possible for a

wide family of Siegel modular forms of degree 2. In order to do that, we

chose to work with Siegel modular forms that are invariant under the action

of the group

Γ0(N1, N2) := Sp4(Z) ∩


Z N1Z Z Z

Z Z Z Z

N2Z N2Z Z Z

N2Z N2Z N1Z Z

 , N1|N2.

This includes paramodular forms and Siegel modular forms invariant under

the action of the Siegel or Borel congruence subgroups of Sp4(Z). Looking

at this invariance property, it is easy to see that the Fourier coefficients of

such a form F satisfy the equality

a(F, T ) = a(F, tATA) for all A ∈ Γ0(N1).

If T ′ = tATA for some A ∈ Γ0(N1), we say that the matrices T, T ′ (or

the corresponding Fourier coefficients) are Γ0(N1)-equivalent ; we introduce
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the set H(dM2, L; Γ0(N1)) consisting of all Γ0(N1)-equivalence classes of

matrices T whose discriminant is equal to dM2L2, T/L is a primitive ma-

trix (such L is called a content of T ) and d is a (negative) fundamental

discriminant. Equivalently,

H(dM2, L; Γ0(N1)) = {

(
a b/2

b/2 c

)
:
a, b, c ∈ Z, gcd(a, b, c) = L,

b2 − 4ac = dM2L2
}/ ∼ ,

where T ∼ T ′ means that there exists A ∈ Γ0(N1) such that T ′ = tATA.

It is known ([35]) that if N1 = 1, the elements of H(dM2, L; Γ0(1)) are

in a bijective correspondence with the elements of a ray class group Cld(M)

of Q(
√
d) (Cld(1) is simply the ideal class group of Q(

√
d)). If N1 > 1, the

ray class group Cld(MN1) is in general smaller than H(dM2, L; Γ0(N1)) (cf.

Chapter 3). In any case, the set of Γ0(N1)-equivalence classes of Fourier

coefficients is finite.

Hence, it would be useful if we could provide a relation between Fourier

coefficients a(F, T ) that are supported on the representatives of the sets

H(dM2, L; Γ0(N1)) and H(dM ′2, L′; Γ0(N1)), where M ′|M , L′|L are small-

est possible (ideally M ′ = L′ = 1). This is the subject of Sections 4.2, 4.3.

We describe a simple case now.

1.4.1 Relations among Fourier coefficients

Our main result on this topic may be simplified to the following form:

Theorem. Let F be a cuspidal Siegel modular form of degree 2, level

Γ0(N1, N2) and weight k. Suppose that F is an eigenform of the local Hecke

algebra at all primes p - N2. Let d be a negative fundamental discriminant

and let L,M,L′,M ′ be positive integers such that

L′|L, M ′|M, (L,N∞2 ) = (L′, N∞2 ), (M,N∞2 ) = (M ′, N∞2 )

(cf. Section 1.5). Assume moreover that
(
dM2

p

)
= −1 for all primes p|N1.

Then for all characters Λ of H(dM ′2, L′,Γ0(N1)) ∼= Cld(M
′N1),

|Cld(M
′N1)|

|Cld(MN1)|

(
L′M ′

LM

)k ∑
T∈H(dM2,L;Γ0(N1))

Λ−1(T )a(F, T )B(L′,M ′)

=
∑

T ′∈H(dM ′2,L′;Γ0(N1))

Λ−1(T ′)a(F, T ′)B(L,M), (∗)

where the completely explicit function B (depending on Λ and the Hecke

8



eigenvalues of F ) can be found using Sugano’s Theorem 2.2.2.

Remark. In the above theorem we implicitly use the fact that there is

a natural surjective map from H(dM2, L; Γ0(N1)) to H(dM ′2, L′; Γ0(N1))

whenever M ′|M .

Remark. The condition
(
dM2

p

)
= −1 ensures that H(dM2, L; Γ0(N1)) has

a natural group structure. We actually prove a more general result without

this assumption. Then the sum runs over a subset H1(dM2, L; Γ0(N1))

of H(dM2, L; Γ0(N1)) that possesses a group structure; more on this in

Chapter 3.

Remark. In fact, we obtain much more general result (Theorem 4.2.1 or

Corollary 4.2.1) that is applicable to arbitrary automorphic forms on

GSp4(A) (right invariant under IN2 or IN1,N2) and does not require the

conditions (L,N∞2 ) = (L′, N∞2 ), (M,N∞2 ) = (M ′, N∞2 ). However, Theorem

4.2.1 includes ramified terms which have been explicitly computed only in

certain cases, and that forces us to put additional assumptions. The main

issue is non-vanishing of certain values of vectors in local Bessel models at

primes p|N2.

This theorem improves the relation obtained by Andrianov [2] and

Kowalski, Saha, Tsimerman [25] to Siegel modular forms that are invariant

under Γ0(N1, N2) with N1 > 1. The last assumption on dM2 may be omit-

ted, but then the sum runs over a proper subset of H(dM2, L; Γ0(N1)) (cf.

Section 3.3), and therefore does not include all the coefficients with given

content and discriminant. Our more general Theorem 4.2.1 includes the

information at ramified places and is the first result of this type written

down.

The key ingredients to prove this theorem are

• the fact that certain values of global Bessel periods may be expressed

in terms of averages of Fourier coefficients of suitable automorphic

forms,

• a relation (4.4) between local and global Bessel functionals.

We carry out the necessary calculations in Sections 4.2, 4.3. Stating the

equality (4.4) outside a finite set of places gives us more flexibility in for-

mulating our results.

1.4.2 Non-vanishing of ‘simple’ Fourier coefficients

The theorem presented above allows us to deduce a lot of information on

Fourier coefficients. In particular, we may assure the existence of a ‘simple’
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Fourier coefficient.

Theorem. Let F be a non-zero cuspidal Siegel modular form of degree 2,

level Γ0(N1, N2) and weight k. Assume that F is an eigenform of the local

Hecke algebra at all primes p - N2. Let d be a fundamental discriminant

and let L,M be positive integers such that there exists a matrix T0 with

a(F, T0) 6= 0 and discT0 = dM2L2, contT0 = L. Assume that
(
dM2

p

)
= −1

for all primes p|N1. Then there exists a matrix T with content equal to

(L,N∞2 ) such that a(F, T ) 6= 0. In particular, if gcd(L,N2) = 1, a(F, T ) 6=
0 for a primitive matrix T .

Remark. In the special case N1 = 1 (i.e. F is a cusp form with respect to

the Siegel congruence subgroup Γ
(2)
0 (N2)), the condition

(
dM2

p

)
= −1 for

all primes p|N1 is trivially true. Hence our theorem implies the existence

of a non-vanishing coefficient whose content only contains primes dividing

N2. This was also proved by Yamana in [62].

The reason we cannot deduce a(F, T ) 6= 0 for a primitive matrix T

in general from the relation (∗) is because we forced it to exclude the

information on Bφp at primes p|N2. These Bφp are vectors in a local Bessel

model for a representation π that is uniquely associated with F . Computing

the values of Bφp explicitly at p|N2 is in general complicated. However, in

the cases when it was done (e.g. [34], [38]), we can improve our theorem and

deduce non-vanishing of primitive Fourier coefficients. This is an example

of a beneficial interplay between number theory and representation theory.

Theorem. Let F be a non-zero cuspidal Siegel modular form of degree 2,

level Γ0(N1, N2) with N1, N2 square-free, and weight k. Assume that F is an

eigenform of the local Hecke algebra at all primes p, and let π = ⊗πp be the

representation associated to F . Let d be a fundamental discriminant and

let L,M be positive integers such that a(F, T0) 6= 0 and discT0 = dM2L2,

contT0 = L. Assume that
(
dM2

p

)
= −1 for all primes p|N1. Let Λ be such

that ∑
T∈H(dM2,L;Γ0(N1))

Λ−1(T )a(F, T ) 6= 0 .

Under some mild technical assumptions on πp at p|N2 (cf. Corollary 4.4.2),

there exists a primitive matrix T such that a(F, T ) 6= 0.
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1.4.3 Non-vanishing of fundamental Fourier coefficients

of paramodular forms

The theorems mentioned in the previous subsection prove non-vanishing

of ‘simple’ Fourier coefficients (i.e., those whose content or discriminant is

small or can be controlled) under the hypothesis that there exists a matrix

T0 with a(F, T0) 6= 0 and disc(T ) = dM2L2 with
(
dM2

p

)
= −1 for all primes

p dividing N1. Such a seed coefficient can be shown to exist in many cases

(e.g., it trivially exists if N1 = 1), but an important case when such a

coefficient does not exist is the case of paramodular forms.

Paramodular forms are examples of Siegel modular forms that are in-

variant under the action of the paramodular subgroup

Γpara(N) := Sp4(Q) ∩


Z NZ Z Z

Z Z Z Z/N

Z NZ Z Z

NZ NZ NZ Z


for some N ∈ N. Note that the group Γpara(N) contains Γ0(N,N), and thus

in principle the aforementioned results concern also paramodular forms.

However, it may be easily shown (cf. Section 5.1.1) that if F is invariant

under the action of Γpara(N), then necessarily a(F, T ) = 0 for every matrix

T ∈ H(dM2, L; Γ0(N)) such that
(
dM2

p

)
= −1 for any p|N . In other

words, the condition we need (even its weaker version) never holds and

hence a seed coefficient as above does not exist. This makes the results of

the previous subsection not applicable to paramodular forms directly.

Nonetheless, we are able to prove the following result for square-free N ,

which is in fact far stronger than the results of the previous subsection as

we are able to get all the way down to fundamental Fourier coefficients.

Theorem. Let F be a non-zero paramodular newform of square-free level N

and even weight k ≥ 2. Then F has infinitely many non-zero fundamental

Fourier coefficients.

The above theorem is of deep significance because paramodular new-

forms play a key part in the higher dimensional analogue of the modularity

theorem, known as the paramodular conjecture. As mentioned above, we

cannot deduce it directly from the relation (∗). Indeed, we use ramified

Hecke operators, in the classical language, to first prove the existence of a

primitive Fourier coefficient. Once this is done, the existence of a funda-

mental Fourier coefficient requires moving into the world of Jacobi forms
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and half integral weight forms, following a strategy used previously by Saha

[49] and Saha, Schmidt [52]. All this is carried out in Chapter 5.

1.4.4 Maass relations

It is known that a Siegel modular form F is a (classical) Saito-Kurokawa

lift of an elliptic modular form f if and only if its Fourier coefficients satisfy

the Maass relations

a(F,

(
a b/2

b/2 c

)
) =

∑
r| gcd(a,b,c)

rk−1a(F,

(
ac
r2

b
2r

b
2r

1

)
) .

The classical cuspidal Saito-Kurokawa lift of weight k is a lift from a cus-

pidal modular form f ∈ S(1)
2k−2(SL2(Z)) with k even; it is a cuspidal Siegel

modular form F ∈ S(2)
k (Sp4(Z)). The first construction of such a lift was

given by Maass in [28] using correspondences between Siegel and classi-

cal modular forms, Jacobi forms and modular forms of half-integral weight

(see also [12]). However, Saito-Kurokawa lifts can be also constructed using

representation theory ([33], [55]). The advantage of the latter is that it can

be easily generalised to lifts of modular forms of higher level, and also with

an odd weight. In this case, if k is even8, for any f ∈ S(1)
2k−2(Γ0(N)) we get

a cuspidal Siegel modular form of weight k invariant under the action of a

congruence subgroup of GSp4(Z) such that its spin L-function is given by

L(s, F ) = L(s, f)ζ(s− k + 1)ζ(s− k + 2).

This does not tell us though anything about the coefficients of F and

whether they satisfy similar Maass relations. Pitale, Saha and Schmidt

[35] showed that this is indeed the case if F ∈ S
(2)
k (Sp4(Z)) is a Hecke

eigenform.

From a representation theoretic point of view, a Saito-Kurokawa lift

produces from a cuspidal automorphic representation π of PGL2(A) a cus-

pidal automorphic representation Π of PGSp4(A); and we can think of f

as an element in the vector space of π, and F a vector of matching weight

in the vector space of Π. What is important is that any representation Π

we obtain via this (generalised) Saito-Kurokawa lifting is a CAP represen-

tation.

More precisely, consider a cuspidal Siegel modular form F of level

Γ0(N1, N2). We say that F is associated to a CAP representation if the

8If k is odd, the construction leads to a non-holomorphic function (cf. [30]).
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following are true.

1) The adelisation of F gives rise to an irreducible automorophic repre-

sentation π of GSp4(A).

2) The representation π is equivalent at almost all places to a constituent

of a globally induced representation from a proper parabolic subgroup

of GSp4.

Furthermore, we say that F is associated to a P-CAP representation if the

proper parabolic subgroup above is the Siegel parabolic subgroup. The

classical Saito-Kurokawa lifts correspond exactly to the P-CAP represen-

tations. It is known that if k ≥ 3, then F that is associated to a CAP

representation is automatically associated to a P-CAP representation. If

k = 1 or 2, one also has CAP representations associated to other parabolics

(the so-called B-CAP and Q-CAP representations).

Note that the first condition above automatically implies that F is an

eigenform of the local Hecke algebra at all primes not dividing N2. For

general N1, N2, there is no known explicit construction that generalises the

classical Saito-Kurokawa lifts and exhausts the set of all P-CAP F of level

Γ0(N1, N2). It seems difficult then to directly prove the Maass relations

from construction. In this work we are able to prove the Maass relations

using methods of representation theory.

Theorem. Let N1, N2 be positive integers and F be a cuspidal Siegel modu-

lar form of weight k and level Γ0(N1, N2) that is associated to a P-CAP rep-

resentation. Let a, b, c be integers such that gcd(a, b, c, N2) = 1, b2−4ac < 0

and
(
b2−4ac

p

)
= −1 for all p|N1. Let L be any positive integer dividing N∞2

(i.e., all prime factors of L divide N2). Then

a(F,L

(
a b/2

b/2 c

)
) =

∑
r| gcd(a,b,c)

rk−1a(F,L

(
a
r2

b
2r

b
2r

1

)
).

This theorem is another consequence of the relation (∗). It is an exten-

sion of the result of [35] to the lifts from modular forms of higher levels.

1.5 Notation

• N,Z,Q,R,C stand for the natural, integer, rational, real and com-

plex numbers respectively;

Qp denotes the p-adic numbers and Zp the p-adic integers, A stands
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for the adeles of Q and Af :=
∏′

p<∞Qp the finite adeles;

for a ring R we use the superscript R× to denote the invertible ele-

ments in R;

• F is a non-archimedean local field of characteristic zero, o its ring

of integers, p the maximal ideal of o, $ a generator of p, and q the

cardinality of the residue field o/$o; for our global application we

will only need F = Qp;

• Mn denotes the set of n× n matrices, whose identity element is 1n;

we use the superscript M sym
n for symmetric matrices, and M+

n for the

matrices with positive determinant;

we distinguish a set

Pn := {T ∈ 1

2
M sym

n (Z) : T half-integral and positive definite},

where half-integral means that T has integers on the diagonal;
tT is the transpose of T and trT the trace of T ,

cont
(

a b/2
b/2 c

)
:= gcd(a, b, c) , disc

(
a b/2
b/2 c

)
:= b2 − 4ac

are the content and the discriminant of the matrix
(

a b/2
b/2 c

)
;

• The letter G will always stand for the group GSp4 defined as follows:

GSp4(Q) := {g ∈ GL4(Q) : tg

(
1

1
−1
−1

)
g = µ(g)

(
1

1
−1
−1

)
},

where µ(g) ∈ Q×,

Sp4(Q) := {g ∈ G(Q) : µ(g) = 1};

We also define the following local subgroups:

the Iwahori subgroup:

I := I(1) := I(1, 1) = G(o) ∩


o p o o

o o o o

p p o o

p p p o

 ,
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the Borel subgroup of level pn:

I(n) := G(o) ∩


o pn o o

o o o o

pn pn o o

pn pn pn o

 ,

for n1 ≤ n2:

I(n1, n2) := G(o) ∩


o pn1 o o

o o o o

pn2 pn2 o o

pn2 pn2 pn1 o

 ,

the Siegel congruence subgroup of level p:

P1 := I(0, 1) = G(o) ∩


o o o o

o o o o

p p o o

p p o o

 ;

the paramodular subgroup of level p:

P02 := G(F ) ∩


o p o o

o o o o/p

o p o o

p p p o

 ;

• For N =
∏

p p
np we define

IN :=
∏
p<∞

I(np),

and similarly for N1|N2,

IN1,N2 :=
∏
p<∞

I(n1,p, n2,p);

K∗N :=
∏
p<∞

{g ∈ GL2(Zp) : g =

(
∗
∗

)
mod pnp},

K0
N =

∏
p<∞

{g ∈ GL2(Zp) : g =

(
∗
∗ ∗

)
mod pnp};
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• For N1|N2 and N ∈ N we define

Γ0(N1, N2) := G(Q)∩G(R)+IN1,N2 = Sp4(Z)∩


Z N1Z Z Z

Z Z Z Z

N2Z N2Z Z Z

N2Z N2Z N1Z Z

 ,

the Siegel congruence subgroup of level N :

Γ
(2)
0 (N) := Γ0(1, N)

and

Γ
(n)
0 (N) := Sp2n(Z) ∩ {

(
An Bn

NCn Dn

)
: An, Bn, Cn, Dn ∈Mn(Z)},

and the paramodular subgroup of Sp4(Q) of level N :

Γpara(N) := Sp4(Q) ∩


Z NZ Z Z

Z Z Z Z/N

Z NZ Z Z

NZ NZ NZ Z

 .

• For N ∈ N,

Γ0(N) := SL2(Z) ∩

(
Z Z

NZ Z

)
,

Γ0(N) := SL2(Z) ∩

(
Z NZ

Z Z

)
;

and locally at the place p:

Γ0(pnZp) := SL2(Zp) ∩

(
Zp p

nZp

Zp Zp

)
;

• For N ∈ N, X ∈ Z and S ⊆ {p : p|N}, we put

XS :=
∏
p∈S

pordpX , where ordpX := max{n ∈ Z : pn|X};

(X,N∞) := XS with S = {p : p|N},
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and N∞ denotes a formal number such that N l|N∞ for all l ∈ Z+;

pk ‖ N means k = ordpN ;(
X
p

)
denotes the Legendre symbol;

• For a congruence subgroup Γ(n) of Sp2n(Z), we put

M
(n)
k (Γ(n)) := {Siegel modular forms of weight k, level Γ(n)},

S
(n)
k (Γ(n)) := {cuspidal Siegel modular forms of weight k, level Γ(n)}.
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Chapter 2

Local theory

2.1 Local Bessel models for GSp4

We recall the definition of the Bessel model following the exposition of

Furusawa [14] and Pitale, Schmidt [38]. Let S ∈ M2(F ) be a symmetric

matrix such that d = discS = −4 detS 6= 0. For

S =

(
a b/2

b/2 c

)

we define the element

ξ = ξS =

(
b/2 c

−a −b/2

)

and denote by F (ξ) a two-dimensional F -algebra generated by 12 and ξ.

Note that

ξ2 =

(
d
4

d
4

)
.

Depending whether d is a square in F× or not, F (ξ) is isomorphic either

to L = F ⊕ F or to the field L = F (
√
d) via

x12 + yξ 7−→

x+ y
√
d

2
d 6∈ (F×)2

(x+ y
√
d

2
, x− y

√
d

2
) d ∈ (F×)2

. (2.1)

The determinant map on F (ξ) corresponds to the norm map on L, defined

by NL/F (z) = zz̄, where z 7→ z̄ is the usual involution on L fixing F . We
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define the Legendre symbol as

(
L

p

)
=


−1 if L/F is an unramified field extension

0 if L/F is a ramified field extension

1 if L = F ⊕ F

.

If L is a field, denote by oL, pL, $L the ring of integers, the maximal ideal

of oL and a fixed choice uniformizer in oL, correspondingly. If L = F ⊕ F ,

let oL = o ⊕ o, $L = ($, 1). Define an ideal P := poL in oL; note that

P = pL is prime only if
(
L
p

)
= −1, otherwise P = p2

L if
(
L
p

)
= 0 and

P = p⊕ p if
(
L
p

)
= 1.

We define a subgroup T = TS of GL2 by

T (F ) = {g ∈ GL2(F ) | tgSg = det(g)S} . (2.2)

It is not hard to verify that T (F ) = F (ξ)×, so that T (F ) ∼= L×. We identify

T (F ) with L× via (2.1). We can consider T as a subgroup of G1 via

T 3 g 7−→

(
g

det g · tg−1

)
∈ G.

Let us denote by U the subgroup of G defined by

U = {u(X) =

(
12 X

12

)
| tX = X},

and finally let R be the subgroup of G defined by R = TU .

We fix a non-trivial additive character ψ of F such that ψ is trivial on

o, but non-trivial on p−1, and define the character θ = θS on U(F ) by

θ(u(X)) := ψ(tr (SX)) . (2.3)

Let Λ be a character of T (F ) such that Λ|F× = 1. Denote by Λ ⊗ θ the

character ofR(F ) defined by (Λ⊗θ)(tu) = Λ(t)θ(u) for t ∈ T (F ), u ∈ U(F ).

Let π be an irreducible admissible representation of the group G(F )

with trivial central character. We say that such2 a π has a local Bessel

model of type (Λ, θ) if π is isomorphic to a subrepresentation of the space

1Recall that we denote by G the group GSp4.
2We define a local Bessel model only for representations with trivial central character,

because our main results are formulated for such representations. To define a local Bessel
model of type (Λ, θ) for a representation π with the central character ωπ, one should
assume that Λ|F× = ωπ and leave the rest unchanged.
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of all locally constant functions B on G(F ) satisfying the local Bessel trans-

formation property

B(rg) = (Λ⊗ θ)(r)B(g) for all r ∈ R(F ) and g ∈ G(F ) .

It is known by [31], [42] that if a local Bessel model exists, then it is unique.

If the local Bessel model for π exists, we denote it by BπΛ,θ. In this case, we

fix a (unique up to scalar) isomorphism of representations π → BπΛ,θ and

denote the image of any φ ∈ π by Bφ.

In the Lemma below we explain how to switch between Bessel models

defined with respect to different matrices S. Together with Lemma 1.1,

[39] that will allow us to assume, without any loss of generality, that the

entries a, b, c and the discriminant d = b2 − 4ac of S satisfy the following

conditions:

• a, b ∈ o and c ∈ o×.

• If d /∈ (F×)2, then d is a generator of the discriminant of L/F. (2.4)

• If d ∈ (F×)2, then d ∈ o×.

Lemma 2.1.1. Let S ∈ M2(F ) be symmetric, and let Λ be a character

of the associated group TS(F ). Let A ∈ GL2(F ) and α ∈ F×. Let S ′ =

α tASA. Then TS′(F ) = A−1TS(F )A, so that

Λ′(t′) = Λ(At′A−1), t′ ∈ TS′(F ) ,

defines a character of TS′(F ). Let π be an irreducible admissible represen-

tation of G(F ). Then π has a local Bessel model of type (Λ, θS) if and only

if it has a local Bessel model of type (Λ′, θS′).

Proof. Indeed, if B ∈ BπΛ,θ, then B′(g) := B(
(
A
α−1 tA−1

)
g), g ∈ G(F )

satisfies the Bessel transformation property and the map B → B′ gives rise

to a local Bessel model BπΛ′,θS′ .

2.2 Sugano’s formula

We now investigate more closely the case when π is spherical, that is, π has

a non-zero G(o)-invariant vector. Such a representation is a constituent of

a representation parabolically induced from an unramified character γ of
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the Borel subgroup of G(F ). The values of the character γ at the matrices

($
$

1
1

)
,
($

1
1
$

)
,

(
1

1
$
$

)
,

(
1
$
$

1

)
are called the Satake parameters of π and determine the isomorphism class

of π. Because central character of π is trivial, we can call them in turn

α, β, α−1, β−1.

Throughout this section we assume the following:

(i) π is a spherical representation of G(F ),

(ii) S =
(

a b/2
b/2 c

)
with a, b, c satisfying the conditions (2.4),

(iii) θ = θS is the character of U(F ) as in (2.3),

(iv) Λ is a character of T (F ) that is invariant under the subgroup

T (n) := T (F ) ∩ {g ∈ GL2(o) : g =

(
λ

λ

)
mod pn, λ ∈ o×} ,

for some non-negative integer n.

The next Lemma shows equivalent ways of writing the group T (n).

Thanks to this, our definition coincides with the one used in [35] and [38].

Lemma 2.2.1. The group T (n) defined above is isomorphic to each of the

following:

T (F ) ∩ {g ∈ GL2(o) : g =

(
∗
∗ ∗

)
mod pn},

T (F ) ∩ {g ∈ GL2(o) : g =

(
∗
∗

)
mod pn}

and (under the isomorphism T (F ) ∼= L×)

o× (1 + Pn) ∩ o×L .

Moreover, every character of T (F ) that is trivial on o× is trivial on T (n)

for n big enough.

Proof. By Lemma 3.1.1, [40], oL = o + oξ0, where

ξ0 =


−b+
√
d

2
if L is a field(

−b+
√
d

2
, −b−

√
d

2

)
if L = F ⊕ F

. (2.5)
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Therefore by the identification (2.1),

oL = {

(
x yc

−ya x− yb

)
: x, y ∈ o} .

Hence, under the assumptions (2.4) and via the isomorphism T (F ) ∼= L×,

the group T (o) := T (F )∩GL2(o) is isomorphic to o×L and T (F )∩M2(o) ∼=
oL. In this way

λ(1 + Pn) ∩ o×L = λ(12 + pn(T (F ) ∩M2(o))) ∩ T (o)

and thus

T (n) ∼= o× (1 + Pn) ∩ o×L . (?)

Assume now that g ∈ T (F )∩GL2(o) is congruent to ( ∗∗ ∗ ) mod pn. We

already know that g must be of the form x12 + y ( c
−a −b ) with x, y ∈ o.

However, because c ∈ o×, we have y ∈ pno, and thus g = ( x x ) mod pn,

which means that g ∈ T (n). The other inclusions are clear.

To prove the last assertion we use the isomorphism (?). Because o× is

compact and {λ(1 + Pn) ∩ o×L : n ∈ N} gives a set of neighbourhoods of

each λ ∈ o× in o×L , so if Λ is trivial on o×, it must be trivial on {λ(1 +

Pn) ∩ o×L : λ ∈ o×} for n big enough.

Definition 2.2.1. The smallest integer n for which Λ is T (n)-invariant or,

equivalently,

min{n ≥ 0 : Λ|(1+Pn)∩o×L
= 1}

will be denoted by c(Λ).

Under the assumptions (i)-(iv), π has a local Bessel model of type (Λ, θ)

for Λ as specified in Table 2. For example, if π is an irreducible spherical

principal series representation (type I), such a local Bessel model exists

for all Λ. This model contains a unique (up to multiples) G(o)-invariant

vector, which we will denote by B
(0)
π (Λ, θ) or by B

(0)
π . The following results

are due to Sugano [60].

Theorem 2.2.1 (Sugano; [60]). Assume (i)-(iv), let Λ be such that the

local Bessel model BπΛ,θ exists and put

h(l,m) :=


$l+2m

$l+m

1

$m

 (2.6)
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for l,m ∈ Z, m ≥ 0. Then

1. B
(0)
π (h(l,m)) = 0 if l < 0 or m < c(Λ).

2. B
(0)
π (h(0, c(Λ))) 6= 0.

Because of the above theorem, if the local Bessel model BπΛ,θ exists, we

can and will henceforth normalize B
(0)
π so that B

(0)
π (h(0, c(Λ))) = 1. For

brevity, we shall henceforth denote

Uπ(l,m) := q2m+3l/2B(0)
π (h(l,m+ c(Λ))) .

Then Sugano’s formula states that

Theorem 2.2.2 (Sugano; [60]). Let π be a spherical representation with Sa-

take parameters α, β, α−1, β−1. Assume that π admits a local Bessel model

and let Uπ(l,m) be as above. Then the generating function

C(X, Y ) = C(X, Y ;α, β) =
∑
l≥0

∑
m≥0

Uπ(l,m)XmY l (2.7)

is a rational function given by

C(X, Y ) =
H(X, Y )

P (X)Q(Y )
,

where

P (X) = (1− αβX)(1− αβ−1X)(1− α−1βX)(1− α−1β−1X),

Q(Y ) = (1− αY )(1− βY )(1− α−1Y )(1− β−1Y ),

H(X, Y ) = (1 +XY 2)
(
M1(X)(1 +X) + q−1/2εσ(α, β)X2

)
−XY

(
σ(α, β)M1(X)− q−1/2εM2(X)

)
− q−1/2εP (X)Y

+ q−1

(
Λ

p

)
P (X)Y 2,

in terms of auxiliary polynomials given by

σ(α, β) = α + β + α−1 + β−1, τ(α, β) = 1 + αβ + αβ−1 + α−1β + α−1β−1,

M1(X) = 1−
(
q −

(
Λ

p

))−1(
q1/2εσ(α, β)−

(
Λ

p

)
(τ(α, β)− 1)− ε2

)
X

− q−1

(
Λ

p

)
X2,

M2(X) = 1− τ(α, β)X − τ(α, β)X2 +X3,
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where (
Λ

p

)
=


(
L
p

)
if c(Λ) = 0

0 if c(Λ) > 0
,

ε =


0 if

(
L
p

)
= −1 or c(Λ) > 0

Λ($L) if
(
L
p

)
= 0, c(Λ) = 0

Λ($L) + Λ($$−1
L ) if

(
L
p

)
= 1, c(Λ) = 0

.

2.3 Bessel models for non-spherical

representations

In general, given characters Λ and θ as defined in Section 2.1, a non-

spherical (irreducible admissible) representation π may or may not have a

(Λ, θ)-Bessel model. In case π is non-supercuspidal, Roberts and Schmidt

[46] used a classification of such representations due to Sally and Tadić [53]

and for all of them provided a complete list of characters Λ for which the

(Λ, θ)-Bessel model exists. We summarise a part of their result in a Table

2 below for the representations that will be of special interest to us (mainly

because of the knowledge on their test vectors - cf. Theorems 2.3.1, 2.3.2,

2.3.3).

Throughout this section we assume that the characters Λ, θ satisfy the

conditions (ii)-(iv). We assume also that π is an irreducible admissible

representation with trivial central character.

Definition 2.3.1. Let φ ∈ Vπ, and the characters Λ, θ be such that BπΛ,θ
exists. Let h(l,m) be as in (2.6) and define

mφ,Λ := min({m : Bφ(h(0,m)) 6= 0} ∪ {∞}) . (2.8)

Whenever mφ,Λ <∞, we normalise Bφ(h(0,mφ,Λ)) so that it is equal to 1.

Note that mφ,Λ = c(Λ) if π is spherical and a (Λ, θ)-Bessel model for π

exists. In this section we will prove that this continues to hold for some

other cases.

We will now recall some results due to Pitale and Schmidt [34], [38]

on local Bessel models for non-spherical representations that have a non-

zero vector fixed under the subgroup I or P1. These theorems identify

test vectors for the aforementioned representations; the representations are

classified according to Table 1 (taken from [38]). Table 2 (taken from [46])

provides precise conditions that character Λ needs to satisfy so that a given
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representation has a (Λ, θ)-Bessel model.

Table 1. The Iwahori-spherical representations of GSp4(F ) and the di-

mensions of their spaces of fixed vectors under the parahoric subgroups.

The symbol ν stands for the absolute value on F×, normalized such that

ν($) = q−1, σ and ξ denote the non-trivial, quadratic characters of F×, ξ

unramified.

Type representation GSp4(o) P02 P1 I

I χ1 × χ2 o σ (irreducible) 1 2 4 8

II a χStGL2 o σ 0 1 1 4

b χ1GL2 o σ 1 1 3 4

III a χo σStGSp2
0 0 2 4

b χo σ1GSp2
1 2 2 4

IV a σStGSp4
0 0 0 1

b L(ν2, ν−1σStGSp2
) 0 0 2 3

c L(ν3/2StGL2 , ν
−3/2σ) 0 1 1 3

d σ1GSp4
1 1 1 1

V a δ([ξ, νξ], ν−1/2σ) 0 0 0 2

b L(ν1/2ξStGL2 , ν
−1/2σ) 0 1 1 2

c L(ν1/2ξStGL2 , ξν
−1/2σ) 0 1 1 2

d L(νξ, ξ o ν−1/2σ) 1 0 2 2

VI a τ(S, ν−1/2σ) 0 0 1 3

b τ(T, ν−1/2σ) 0 0 1 1

c L(ν1/2StGL2 , ν
−1/2σ) 0 1 0 1

d L(ν, 1F× o ν−1/2σ) 1 1 2 3

25



Table 2. The Bessel models of the irreducible, admissible representations

of GSp4(F ) that can be obtained via induction from the Borel subgroup.

The column L ↔ ξ indicates that the field L is the quadratic extension

of F corresponding to the non-trivial, quadratic character ξ of F×. The

pairs of characters (χ1, χ2) in the L = F ⊕ F column for types IIIb and

IVc refer to the characters of T = {diag(a, b, b, a) : a, b ∈ F×} given by

diag(a, b, b, a) 7→ χ1(a)χ2(b).

Type (Λ, θ)-Bessel functional exists exactly for . . .

L=F ⊕ F L/F a field extension

L↔ξ L 6↔ξ

I all Λ all Λ

II a all Λ Λ 6=(χσ) ◦NL/F

b Λ=(χσ) ◦NL/F Λ=(χσ) ◦NL/F

III a all Λ all Λ

b Λ∈{(χσ, σ), (σ, χσ)} —

IV a all Λ Λ 6=σ ◦NL/F

b Λ=σ ◦NL/F Λ=σ ◦NL/F

c Λ=(ν±1σ, ν∓1σ) —

d — —

V a all Λ Λ 6=σ ◦NL/F σ ◦NL/F 6=Λ 6=(ξσ) ◦NL/F

b Λ=σ ◦NL/F — Λ=σ ◦NL/F

c Λ=(ξσ) ◦NL/F — Λ=(ξσ) ◦NL/F

d — Λ=σ ◦NL/F —

VI a all Λ Λ 6=σ ◦NL/F

b — Λ=σ ◦NL/F

c Λ=σ ◦NL/F —

d Λ=σ ◦NL/F —
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Theorem 2.3.1 (Pitale; [34]). Assume (ii)-(iv). Let π be of type IVa. If

π has a (Λ, θ)-Bessel model and φ ∈ Vπ is a vector fixed by I, then:

mφ,Λ =


0 if c(Λ) = 0

0 if c(Λ) = 1 and either
(
L
p

)
6= 1 or Λ(1, $) 6= σ($)

c(Λ)− 1 if c(Λ) > 1

(σ is a character of F× as in Table 1).

Theorem 2.3.2 (Pitale, Schmidt; [38]). Assume (ii)-(iv). Let π be a rep-

resentation of G(F ) that is not spherical but has a one-dimensional space

of P1-invariant vectors (i.e. π is of type IIa, IVc, Vb, Vc, VIa or VIb).

Assume that π admits a (Λ, θ)-Bessel model and let φ be an element in this

model spanning the space of P1-invariant vectors. Then

mφ,Λ = c(Λ)

unless π is of type IIa,
(
L
p

)
= 1 and Λ(1, $) = −ω = Λ($, 1) (ω denotes

an eigenvalue of the Atkin-Lehner operator at φ).

Theorem 2.3.3 (Pitale, Schmidt; [38]). Assume (ii)-(iv). Let π be a rep-

resentation of G(F ) that is not spherical but has a two-dimensional space of

P1-invariant vectors (i.e. π is of type IIIa or IVb). Assume that π admits

a (Λ, θ)-Bessel model. Then the space of P1-invariant vectors is spanned

by common eigenvectors for the Hecke operators

T1,0(v) :=
1

vol(P1)

∫
P1h(1,0)P1

π(g)v dg

and

T0,1(v) :=
1

vol(P1)

∫
P1h(0,1)P1

π(g)v dg ,

and if φ is any such eigenvector, then

mφ,Λ = c(Λ) .

Moreover, if φ satisfies the assumptions of Theorem 2.3.2 or 2.3.3,

T1,0φ = λφ and T0,1φ = µφ, then ([38], Proposition 6.1)

Bφ(h(l + 1,m)) = λq−3Bφ(h(l,m)) for all l,m ≥ 0 ,
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and for l ≥ 0,m ≥ c(Λ)

q4Bφ(h(l,m+ 2))− µBφ(h(l,m+ 1)) + λ2q−3Λ($)Bφ(h(l,m)) = 0

or, more generally, for l ≥ 0,

Y −c(Λ)

∞∑
m=c(Λ)

Bφ(h(l,m))Y m =
1− κq−4Y

1− µq−4Y + λ2q−7Λ($)Y 2
Bφ(h(l, c(Λ))) ,

where κ is an (explicit) constant depending on eigenvalues λ, µ, character

Λ, F and L, and such that κ = 0 if c(Λ) > 0 (values of λ and µ are listed

in Table 4, [38] in terms of invariants of π).

Remark. The upshot of this section is that for almost3 every representation

π listed in Table 2 that admits a (Λ, θ)-Bessel model, and for each new

vector φ ∈ Vπ fixed under the action of G(o), P1 or I, we know the (finite)

value of mφ,Λ. In most cases it is equal to c(Λ).

Unfortunately, we cannot use these theorems for vectors φ that are

invariant under the action of I(n1, n2) with n2 > 1. However, by an easy

adaptation of the proof given in [34], we provide a lower bound for mφ,Λ:

Lemma 2.3.1. Assume (ii)-(iv). Let π be a representation of G(F ) that

has an I(n1, n2)-invariant vector φ for some n2 ≥ n1 ≥ 0. Then

mφ,Λ ≥ max(0, c(Λ)− n1) .

Proof. The proof is basically the same as the one for Lemma 3.5 in [34],

but we write it down for the sake of completeness.

It is clear that mφ,Λ ≥ 0. We may assume then that c(Λ) > n1. Let

m < c(Λ) − n1, and l ∈ Z. It is enough to find an element k ∈ I(n1, n2)

such that h(l,m)k = th(l,m), t ∈ T (m+ n1) and Λ(t) 6= 1, because then

Bφ(h(l,m)) = Bφ(h(l,m)k) = Bφ(th(l,m)) = Λ(t)Bφ(h(l,m)) = 0 .

An easy calculation shows that we may take

k =


1 + x cy$−m

−ay$m 1 + x− by
1 + x− by ay$m

−cy$−m 1 + x

 ,

3With an exception of type Va and VIc, and with some mild assumptions on types
IIa, IVa.
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where x, y ∈ pm+n1 are such that Λ(1 + x + yξ0) 6= 1 and ξ0 as in (2.5)

(recall that 1 + x + yξ0 ∈ o× (1 + Pm+n1) ∩ o×L
∼= T (m + n1) by Lemma

2.2.1).

The aforementioned theorems show that this bound is optimal in many

cases. Therefore it makes sense to make the following definition.

Definition 2.3.2. Let π be a representation of G(F ) that has an I(n1, n2)-

invariant vector φ for some n2 ≥ n1 ≥ 0. We say that φ is optimal if for all

characters Λ of T (F ) one of the following holds:

• π has no (Λ, θ)-Bessel model,

• π has a (Λ, θ)-Bessel model and mφ,Λ = max(0, c(Λ)− n1).

Remark. The vector φ ∈ Vπ is optimal whenever

(i) n1 = n2 = 0 (i.e. π is spherical);

(ii) n1 = 0, n2 = 1 and either π is not of type IIa or
(
L
p

)
6= 1;

(iii) n1 = n2 = 1 and π is of type IVa.
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Chapter 3

Ray class groups

and Γ0(N)-equivalence

Throughout this chapter we are interested in the elements of the set

P2 := {T ∈ 1

2
M sym

2 (Z) : T half-integral and positive definite} , (3.1)

where we call a matrix T half-integral if it has integers on the diagonal.

These matrices may be characterised according to their content and dis-

criminant, defined as

cont

(
a b/2

b/2 c

)
:= gcd(a, b, c) , disc

(
a b/2

b/2 c

)
:= b2 − 4ac .

In particular, each discriminant can be written as dM2L2, where d is a

fundamental discriminant1 and L is a content of the matrix. From now on

d will denote a negative fundamental discriminant.

Definition. Let Γ be a congruence subgroup of SL2(Z). We say that two

matrices T and T ′ are Γ-equivalent if there exists a matrix A ∈ Γ such that

T ′ = tATA.

It is easy to see that this relation preserves discriminant and content of

the matrices. Therefore it makes sense to make the following definition:

Definition. Let d be a negative fundamental discriminant, and L,M pos-

itive integers. For any congruence subgroup Γ of SL2(Z) we define the set

1Recall that d is a fundamental discriminant if d is square-free and d ≡ 1 (mod 4)
or d = 4d′, d′ square-free and d′ ≡ 2, 3 (mod 4). Or, equivalently, if d = 1 or d is the
discriminant of a quadratic number field.
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of Γ-equivalence classes

H(dM2, L; Γ) := {T ∈ P2 : discT = dL2M2, contT = L}/ ∼Γ ,

where

T ∼Γ T
′ ⇐⇒ ∃A∈ΓT

′ = tATA .

Because of the relation (5.2) satisfied by Fourier coefficients of Siegel

modular forms, we are especially interested in the set H(dM2, L; Γ0(N)),

where

Γ0(N) := {g ∈ SL2(Z) : g ≡ ( ∗∗ ∗ ) mod N} .

It is well-known that when M= N=1, the set H(d, L; Γ0(1)) is isomor-

phic to the ideal class group of Q(
√
d). As we shall see, when M,N > 1 the

situation is more complicated. In [35], Pitale, Saha and Schmidt found a

bijection between H(dM2, L; Γ0(1)) and a certain ray class group of Q(
√
d),

which we will call later Cld(M). In the next section we are going to extend

their result to N > 1.

3.1 Construction of an endomorphism

Fix positive integers M,N and a negative fundamental discriminant d. Let

S(d) =

(
a b/2

b/2 c

)
:=



−d4 0

0 1

 if d ≡ 0 (mod 4)

1−d
4

1
2

1
2

1

 if d ≡ 1 (mod 4)

(3.2)

and let T = TS(d) be a group defined in section 2.1.

Definition 3.1.1. For N =
∏

p p
np define

TN :=
∏
p<∞

T (np) and Cld(N) := T (A)/T (Q)T (R)TN ,

where T (np) ⊆ T (Qp) is as in section 2.2 and by T (0) we mean the maxi-

mal compact subgroup T (Zp) := T (Qp) ∩GL2(Zp) of T (Qp).

Because of the isomorphism described in Lemma 2.2.1, we may view Cld(N)

as a ray class group of Q(
√
d).
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Basing on the argument of [35], we will now describe a certain map from

Cld(N
′) to H(dM2, L; Γ0(N)), where N ′ is any integer divisible by MN .

Let c ∈ Cld(N
′) and let tc ∈ T (A) be a representative for c such that

tc ∈
∏

p<∞ T (Qp). By strong approximation we can write tc = γcmcκc,

where γc ∈ GL2(Q), mc ∈ GL2(R)+ and κc ∈ K∗N ′ . Also, denote by (γc)f

the finite part of γc when considered as an element of GL2(A), thus we

have the equality (γc)f = γcmc, as elements of GL2(A). Let

Sc := det(γc)
−1 tγcS(d)γc ; (3.3)

it is a positive definite, half-integral, symmetric matrix of discriminant d

and content 1 (cf. [14], p. 209). Put

φL,M(c) = L (M 1 )Sc (M 1 ) . (3.4)

Then φL,M(c) is a matrix of discriminant dM2L2 and content L.

Note that the matrices φL,M(c) constructed above are not uniquely de-

fined, as they depend on the choice of tc and κc. However, the definition is

correct for Γ0(N)-equivalence classes.

Proposition 3.1.1. Assume that MN |N ′. Then the map φ̃L,M = φ̃L,M ;N ′

from Cld(N
′) to H(dM2, L; Γ0(N)), sending c to φL,M(c) is well-defined.

Moreover, if N ′ = MN , φ̃L,M ;N ′ is injective.

Proof. This follows almost immediately from the proof of Proposition 5.3,

[35]. The first part goes without any change. To show injectivity, it

suffices to exchange a group SL2(Z) occurring in the second part of the

proof with Γ0(N). More precisely, if we assume that there exists a ma-

trix A ∈ Γ0(N) such that tAφL,M(c2)A = φL,M(c1), then A must be,

in fact, an element of Γ0(N) ∩ Γ0(M). Observe that tRSc2R = Sc1 for

R = (M 1 )A
(

1/M
1

)
∈ Γ0(MN), and so if γ1, γ2 correspond to Sc1 , Sc2

via (3.3), then γ2Rγ
−1
1 ∈ T (Q). Therefore, if we take t1 = γ1γ

−1
1,∞κ1 and

t2 = γ2γ
−1
2,∞κ2 as representatives in

∏
p<∞ T (Qp) of c1 and c2, then

γ2Rγ
−1
1 ∈ T (Q) ∩ t2GL2(R)+K0

MN t
−1
1 .

This means that t1 and t2 represent the same element in Cld(N
′), provided

N ′ = MN .
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3.2 The image of φ̃L,M

We start with the observation that the image of the map φ̃L,M from Cld(N
′)

to H(dM2, L; Γ0(N)) constructed above does not depend on N ′, but only

on MN .

Lemma 3.2.1. Let MN |N ′1|N ′2, and let ρ : Cld(N
′
2)→ Cld(N

′
1) be the nat-

ural projection. Then the following diagram is commutative:

Cld(N′2) Cld(N′1)

H(dM2, L; Γ0(N))

φ̃L,M;N′2

ρ

φ̃L,M;N′1

Proof. This follows by construction. Let c ∈ Cld(N
′
1) and c1, c2, . . . , ct

be the elements of Cld(N
′
2) that the map ρ sends to c. Choose distinct

i, j ∈ {1, 2, . . . , t}. We will show that φL,M(ci) and φL,M(cj) are Γ0(N)-

equivalent. For this it suffices to find γ ∈ Γ0(N) such that γci (M 1 ) =

γcj (M 1 ) γ. Denote by (γci)p the image of γci in GL2(Zp), when embedded

diagonally. Since ci, cj map to c, (γci)pT (ordp(N
′
1)) = (γcj)pT (ordp(N

′
1)) for

all primes p|N ′1 or p - N
′
2

N ′1
. Hence, for each of those primes there exists gp ∈

T (ordp(N
′
1)) such that (γci)p = (γcj)pgp. Note that we can choose γci and

γcj in such a way that γciT (Q)T (R)
∏

p T (Zp) = γcjT (Q)T (R)
∏

p T (Zp).

Hence, for primes p|N
′
2

N ′1
, gp := (γ−1

cj
)p(γci)p is still in T (Zp). This shows that

g := γ−1
cj
γci ∈ Γ0(MN). Now it’s easy to check that γ :=

(
1/M

1

)
g (M 1 )

gives a desired Γ0(N)-equivalence.

Put

H1(dM2, L; Γ0(N)) := im
(
φ̃L,M : Cld(MN)→ H(dM2, L; Γ0(N))

)
.

Remark. The map φ̃L,M from Cld(MN) to H1(dM2, L; Γ0(N)) is a bijec-

tion. H1(dM2, L; Γ0(N)) acquires a natural group structure that makes it

isomorphic to Cld(MN). Hence if Λ is any character of Cld(MN), then we

can naturally think of Λ as a character of H1(dM2, L; Γ0(N)).

In Chapter 4 we will naturally encounter sums like∑
c∈Cld(N ′)

Λ−1(c)a(F, φL,M(c))

for a character Λ of Cld(N
′). Observe that, if we denote by ρ a natural

projection from Cld(N
′) to Cld(MN), we have the following useful fact:
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∑
c∈Cld(N ′)

Λ−1(c)a(F, φL,M(c)) =
∑

c∈Cld(MN)

a(F, φL,M(c))
∑

c̃∈Cld(N ′)
ρ(c̃)=c

Λ−1(c̃)

=

0 if C(Λ) -MN

|Cld(N ′)|
|Cld(MN |)

∑
T∈H1(dM2,L;Γ0(N)) Λ−1(T )a(F, T ) if C(Λ)|MN,

(3.5)

where C(Λ) =
∏

p p
c(Λp) is the smallest integer such that Λ|TC(Λ)

= 1.

Let us now try to describe more accurately the set H1(dM2, L; Γ0(N)).

This will give us information on the coefficients occurring in the sum above.

Lemma 3.2.2. Suppose that S ′ =
(

a′ b′/2
b′/2 c′

)
is a matrix of discriminant

dM2L2 and content L, ξS′ =
(
b′/2 c′

−a′ −b′/2

)
. Let E(S ′) be the subgroup of

SL2(Z) defined as follows

E(S ′) := {g ∈ SL2(Z) : gtS ′g = S ′} .

Then

1. If d 6=−4,−3, or if M>1, then E(S ′)={±12}.

2. If (d,M)=(−4, 1), then E(S ′)={±12,±ξS′}.

3. If (d,M)=(−3, 1), then E(S ′)={±12,±
(

1
2
12 + ξS′

)
,±
(
−1

2
12 + ξS′

)
}.

Proof. Note that E(S ′) = {g ∈ TS′(Q) ∩ SL2(Z) : det g = 1} and it does

not depend on the content of S ′. We may assume then that L = 1. A

discussion at the beginning of section 2.1 applies also when discS ′ = dM2

and F = Q, i.e. there is an identification

TS′(Q) = Q(ξS′)
× 3 x+ yξS′ 7−→ x+ y

√
det ξS′

2
= x+ y

M
√
d

2
∈ Q(

√
d) .

Therefore E(S ′) corresponds to the units of the ring of integers of Q(
√
d)

of the form x+yM
√
d

2
. It’s easy to check that they are of the form proposed

above.

Proposition 3.2.3. Suppose that S1, . . . , St are matrices that are a com-

plete set of (distinct) representatives for H(dM2, L; Γ0(1)), and A1,..., Ar

form a complete set of (distinct) representatives for SL2(Z)/Γ0(N).

1. Assume that either d 6= −4,−3, or M > 1. Then AtiSjAi gives a

complete set of distinct representatives for H(dM2, L; Γ0(N)), i.e.

|H(dM2, L; Γ0(N))| = tr =
|Cld(1)|
u(d)

MN
∏
p|M

(1−p−1

(
d

p

)
)
∏
p|N

(1+1/p),
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where u(d) = 1 if d 6= −4,−3, and u(−3) = 3, u(−4) = 2.

2. Assume that (d,M) = (−4, 1) and let N = 2n0pn1
1 . . . pnss be the prime

decomposition of N . Then

|H(−4, L; Γ0(N))| = 1

2

N∏
p|N

(1 + 1/p) + L−4

 ,

where

L−4 =

2s if n0 ≤ 1 and ∀ipi ≡ 1 (mod 4)

0 otherwise.

3. Assume that (d,M) = (−3, 1) and let N = 3n0pn1
1 . . . pnss be the prime

decomposition of N . Then

|H(−3, L; Γ0(N))| = 1

3

N∏
p|N

(1 + 1/p) + 2L−3

 ,

where

L−3 =

2s if n0 ≤ 1 and ∀ipi ≡ 1 (mod 6)

0 otherwise.

Proof. Recall (e.g. [19], Proposition 2.5 and [7], Theorem 8.2) that

r = N
∏
p|N

(1 + 1/p)

and

t = |Cld(M)| =


|Cld(1)|
u(d)

M
∏

p|M(1− p−1
(
d
p

)
) if M > 1

|Cld(1)| if M = 1
.

Each equivalence class in H(dM2, L; Γ0(1)) (i.e. j ∈ {1, . . . , t} is fixed) can

be written as a union of sets { tg tAiSjAig : g ∈ Γ0(N)} with i ∈ {1, . . . , r}.
The question is whether they are all disjoint. Assume this is not the case

for the sets corresponding to i1 and i2, i.e. assume there exists g ∈ Γ0(N)

such that tAi1SjAi1 = tg tAi2SjAi2g. Then Sj = t(Ai2gA
−1
i1

)SjAi2gA
−1
i1

,

where Ai2gA
−1
i1
∈ SL2(Z). Hence, Ai2gA

−1
i1
∈ E(Sj) and Lemma 3.2.2 tells

us precisely what these elements may be. The question is whether it does

not imply i1 = i2 and how often this is the case.

1. If d 6= −4,−3, or if M > 1, then Ai2g = ±Ai1 , and so i1 = i2.
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2. If (d,M) = (−4, 1), then either i1 = i2 as above, or Ai2g = ±ξSjAi1 .

3. If (d,M) = (−3, 1), then we get two additional possibilities: either

Ai2g = ±(1
2
I + ξSj)Ai1 or Ai2g = ±(−1

2
I + ξSj)Ai1 .

Let us check whether the remaining cases may happen when i1 6= i2. With-

out loss of generality we may assume that L = 1. Observe that both

H(−4, 1; Γ0(1)) and H(−3, 1; Γ0(1)) contain only one class, namely the one

determined by 12 and
(

1 1/2
1/2 1

)
respectively. Indeed, each of the elements(

a′ b′/2
b′/2 c′

)
in H(dM2, 1; Γ0(1)) can be written uniquely in a reduced form,

that is with |b′| ≤ a′ ≤ c′ (e.g. [8], Theorem 2.8). It is easy to see that

if M = 1 and d = −4,−3, the only matrix satisfying these conditions is

12 and
(

1 1/2
1/2 1

)
respectively. From this observation it also follows that

|Cl−4(1)| = |Cl−3(1)| = 1.

Choose a set of representatives for SL2(Z)/Γ0(N) to be2

{A1, . . . , Ar} = {( ∗ u∗ v ) ∈ SL2(Z) : v|N, u (mod N/v)} .

Let Ai1 = ( ∗ u∗ v ) and Ai2 =
(
∗ u′
∗ v′
)
.

Assume first that (d,M) = (−4, 1). Then g = ±A−1
i2

( 1
−1 )Ai1 is in

Γ0(N) if and only if N |uu′ + vv′. Since gcd(u, v) = 1 = gcd(u′, v′) and

v, v′|N , we must have v = gcd(u′, N), v′ = gcd(u,N) and gcd(v, v′) = 1.

Put u = v′u and u′ = vu′, so that N
vv′
|uu′ + 1. Note that u′ is determined

by v, v′, u. Moreover, under the assumption gcd(v, v′) = 1, i1 = i2 if and

only if v = v′ = 1 and u = u′ satisfies u2 = −1 mod N .

Hence, if we fix u, v, then u′, v′ are uniquely determined and thus there

are
N

2

∏
p|N

(1 + 1/p) +
L−4

2

Γ0(N)-non-equivalent classes within each class in H(−4, L; Γ0(1)), where

L−4 := #{u ∈ {1, . . . , N} : u2 = −1 mod N} .

If (d,M) = (−3, 1), then g = ±A−1
i2

(±1
2
12 +

(
1/2 1
−1 −1/2

)
)Ai1 is in Γ0(N)

if and only if

N |uu′ + vv′ + u′v or N |uu′ + vv′ + uv′ . (??)

We will look for the solutions to the first condition, the latter one being

2For the proof that these indeed constitute representatives for SL2(Z)/Γ0(N), consult
[19], Proposition 2.5.
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symmetric.

From similar reasons as in the previous situation, u′ = vu′ and

gcd(u′, N) = 1. Hence, gcd(v, v′)|uu′, and thus v and v′ are coprime. Our

condition becomes N
v
|v′ + u′(u + v) and implies v′ = gcd(N, u + v). Let

t = u + v and write t = v′t. It is easy to see that t runs through the rests

modulo N/v and gcd(t, v) = 1. Moreover, N
vv′
|1 + u′t.

Hence, if we fix v and u, v′ and u′ are uniquely determined. Similarly,

if N |uũ+vṽ+uṽ, then ũ and ṽ are uniquely determined by u, v. Moreover,

it is easy to check that the conditions (??) hold at the same time only

if v = v′ = 1 and u = u′ satisfies u2 + u + 1 ≡ 0 (mod N). Hence the

conditions (??) and uniqueness of the solution for each of them imply that

unless v = 1 and u2 + u + 1 ≡ 0 (mod N), the matrix ( ∗ u∗ v ) is Γ0(N)-

equivalent to exactly two matrices. Therefore, there are

N

3

∏
p|N

(1 + 1/p) + 2
L−3

3

Γ0(N)-non-equivalent classes within each class in H(−3, L; Γ0(1)), where

L−3 = #{u ∈ {1, . . . , N} : u2 + u+ 1 = 0 mod N} .

In the following lemma we compute the quantities L−4 and L−3, and

that finishes the proof.

Lemma 3.2.4.

1. Let N = 2n0pn1
1 . . . pnss be the prime decomposition of N . Then

#{u ∈ (Z/NZ)× : u2 = −1 mod N}

=

2s if n0 ≤ 1 and ∀ipi ≡ 1 (mod 4)

0 otherwise.

2. Let N = 3n0pn1
1 . . . pnss be the prime decomposition of N . Then

#{u ∈ (Z/NZ)× : u2 + u+ 1 = 0 mod N}

=

2s if n0 ≤ 1 and ∀ipi ≡ 1 (mod 6)

0 otherwise.

Proof. This follows from Chinese Remainder Theorem and two basic facts:

• For an odd prime p, (Z/pnZ)× is a cyclic group of order pn−1(p− 1).
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• (Z/2nZ)× is cyclic of order 1 and 2 for n = 1 and 2, respectively. If

n ≥ 3, then it is the product of two cyclic groups, one of order 2, the

other of order 2n−2.

1. Depending whether p ≡ 1 (mod 4) or p ≡ −1 (mod 4), −1 is a square

in (Z/pnZ)× or not, respectively. Moreover, because there is only

one element of order 2, there are either 2 or 0 solutions to u2 =

−1 mod pn. If p = 2, −1 is a square in (Z/2nZ)× only if n = 1, in

which case −1 = 12.

2. First note that the equation u2 +u+ 1 = 0 has no solution modulo 2.

Furthermore, because the solutions are of the form (−1 +
√
−3)2−1,

the equation has one solution modulo 3 and no solutions modulo 3n

for n > 1. Now, since u3 − 1 = (u− 1)(u2 + u+ 1 = 0), we will look

for the elements of order 3 in (Z/pnZ)×, where p ≡ ±1 (mod 6).

If p ≡ −1 (mod 6), then the order of (Z/pnZ)× is not divisible by 3.

In the other case, there are two elements of order 3, u0 and u2
0, say.

Both of them are zeros of the polynomial u2 + u+ 1 = 0 mod pn.

In Proposition 3.2.3 we computed the size of H(dM2, L; Γ0(N)). On

the other hand, we know that ([35], proof of Proposition 5.3)

|H1(dM2, L; Γ0(N))| = |Cld(MN)| = |Cld(1)|
u(d)

MN
∏
p|MN

(1− p−1

(
d

p

)
)

if MN > 1, where u(d) is as in Proposition 3.2.3. (If MN = 1, then

|H1(dM2, L; Γ0(N))| = |Cld(1)|.) Combining these we get the following

result.

Proposition 3.2.5. The map φ̃L,M : Cld(MN) → H(dM2, L; Γ0(N)) is

surjective if and only if
(
dM2

p

)
= −1 for all primes p|N .

Corollary 3.2.1. The following conditions are equivalent:

1. H1(dM2, L; Γ0(N)) = H(dM2, L; Γ0(N)),

2.
(
dM2

p

)
= −1 for all p|N ,

3. |H(dM2N2, L; Γ0(1))| = |H(dM2, L; Γ0(N))|.

Proof. This follows from the fact that Cld(MN) ∼= H(dM2N2, L; Γ0(1))

(Proposition 5.3, [35]) and Proposition 3.1.1, 3.2.5.
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3.3 Discussion on the image

As we mentioned earlier, in Chapter 4 we will naturally encounter averages

of Fourier coefficients of the form∑
T∈H1(dM2,L;Γ0(N))

Λ−1(T )a(F, T ). (3.6)

Therefore it is important to precisely determine the set H1(dM2, L; Γ0(N)).

Corollary 3.2.1 describes when the sum 3.6 includes all inequivalent coeffi-

cients (according to the relation (5.2)) of given content and discriminant.

However, it would be useful to know which coefficients are omitted.

Lemma 3.3.1. Every class in H1(dM2, 1; Γ0(N)) has a representative with

the (2, 2)-entry coprime to MN .

Proof. Let c ∈ Cld(MN). Every class in H1(dM2, 1; Γ0(N)) contains an

element φ1,M(c) = (M 1 )Sc (M 1 ), where Sc = det(γc)
−1 tγcS(d)γc is as

defined in (3.3); in particular, tc = γcmcκc ∈ GL2(Q)GL2(R+)K∗MN is a

representative for c in T (A). We will show that the (2, 2)-entry of Sc is

coprime to MN .

At each place p|MN , tc,p = γc,pκc,p, so

Sc,p = det(tc,pκ
−1
c,p)
−1 t(tc,pκ

−1
c,p)S(d)tc,pκ

−1
c,p = det(κc,p)

tκ−1
c,pS(d)κ−1

c,p .

Now, because the (2, 2)-entry of S(d) is equal to 1, and the elements on the

diagonal of κc,p are coprime to MN , the (2, 2)-entry of Sc,p at each place

p|MN is also coprime to MN . Hence the statement of the lemma.

Even though the above lemma does not tell us precisely what the set

H1(dM2, 1; Γ0(N)) is, it brings an unwanted conclusion that the sum 3.6

misses all primitive coefficients a(F, T ) of paramodular forms. Indeed, the

property of whether the (2, 2)-entry of a matrix in P2 is coprime to N is

preserved in its Γ0(N)-equivalence class, and if T occurs in a Fourier ex-

pansion of a paramodular form of level N , its (2, 2)-entry is always divisible

by N (cf. Section 5.1.1).
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Chapter 4

Main results

In this chapter we combine local and global theory to obtain our results.

We incorporate the notation from Chapter 2 and 3, putting a subscript p

to indicate the place at which we localise a given object.

The main result is Theorem 4.2.1, which provides a relation between

Fourier coefficients of arbitrary irreducible cuspidal representation of G(A)

with trivial central character. In the next sections we specialise this re-

sult to various cuspidal Siegel modular forms of degree 2. In particular,

we derive an information on non-vanishing of ‘simple’ Fourier coefficients

(Section 4.4) and prove Maass relations for generalised Saito-Kurokawa lifts

(Section 4.5).

4.1 Global Bessel models

Let d be a fundamental discriminant and S = S(d) the matrix defined in

(3.2). Let T, U,R be as in Chapters 2, 3. Let ψ be a fixed non trivial

character of A/Q. We define the character θ = θS on U(A) by θ(u(X)) =

ψ(tr (SX)). Let Λ be a character of T (A)/T (Q) such that Λ|A× = 1, and

denote by Λ⊗ θ the character of R(A).

Throughout this chapter, let π be an (irreducible) automorphic cuspidal

representation of G(A) with trivial central character and Vπ be its space

of automorphic forms. For Φ ∈ Vπ, we define a function BΦ on G(A) by

BΦ(g) =

∫
A×R(Q)\R(A)

(Λ⊗ θ)(r)−1Φ(rg) dr.

The C-vector space of functions on G(A) spanned by {BΦ : Φ ∈ Vπ}
is called the global Bessel space of type (Λ, θS) for π, and its vectors are

called Bessel periods ; it is invariant under the regular action of G(A), and

40



when the space is non-zero, the corresponding representation is a model of

π, which we call a global Bessel model of type (Λ, θ). In fact, if there exists

Φ ∈ Vπ such that BΦ 6= 0, then BΦ 6= 0 for all Φ ∈ Vπ.

For Φ ∈ Vπ and a symmetric matrix S ∈M sym
2 (Q), we define the Fourier

coefficient

ΦS,ψ(g) =

∫
Msym

2 (Q)\Msym
2 (A)

ψ−1(tr (SX))Φ(

(
12 X

12

)
g) dX, g ∈ G(A).

(4.1)

For brevity we will often shorten ΦS,ψ to ΦS.

Lemma 4.1.1.

BΦ(g) =

∫
A×T (Q)\T (A)

Λ−1(t)ΦS(tg)dt for g ∈ G(A) .

Proof.

BΦ(g) =

∫
A×T (Q)\T (A)

∫
Msym

2 (Q)\Msym
2 (A)

θ−1
S (u(X))Λ−1(t)Φ(tu(X)g)dXdt

=

∫
A×T (Q)\T (A)

Λ−1(t)

∫
Msym

2 (Q)\Msym
2 (A)

θ−1
S′ (u(Y ))Φ(u(Y )tg)dY dt ,

where Y = (det t)−1 · tX tt and S ′ = det t · tt−1St−1 = S. This finishes the

proof.

The next Lemma points out the importance of Fourier coefficients de-

fined in (4.1).

Lemma 4.1.2. Let π be a cuspidal, automorphic representation of G(A)

with trivial central character, and let S ∈ M sym
2 (Q). The following are

equivalent.

1. ΦS 6= 0 for some Φ ∈ Vπ.

2. ΦS 6= 0 for all Φ ∈ Vπ.

3. π has a global Bessel model of type (Λ, θS) for some character Λ of

T (A)/T (Q).

Proof. Only i) ⇒ iii) deserves a proof. Assume that ΦS is non-zero. Let

g ∈ G(A) be fixed such that ΦS(g) 6= 0. It is easy to verify that ΦS is left

T (Q)-invariant. Hence, we have a well-defined, non-zero function

A×T (Q)\T (A) −→ C, t 7−→ ΦS(tg) .
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By Fourier theory, there exists a character Λ of T (Q)\T (A) such that∫
A×T (Q)\T (A)

Λ−1(t)ΦS(tg) dt 6= 0 .

This implies that π has a Bessel model of type (Λ, θS).

4.2 The key relation

Fix Φ ∈ Vπ, N ∈ N and assume that Φ is right invariant by the subgroup

IN of G(Af ) defined in Section 1.5. Let S be a subset of the set of primes

dividing N . For any integer X we will use the subscript XS to denote the

part of X inside S (cf. Section 1.5).

For any two integers L,M , we define the element H(L,M) ∈ G(A) by

H(L,M)p :=


(
LM2

LM
1
M

)
, p | LM(

1
1

1
1

)
, p - LM or p =∞

.

Note that H(1, 1) = 1 and H(L,M)p = hp(l,m) for all p < ∞, where

l = ordpL and m = ordpM .

Let Λ =
∏

p≤∞ Λp be a character of T (A)/T (Q)T (R) such that Λ|A×=1

and let C(Λ) =
∏

p p
c(Λp) be the smallest integer such that Λ|TC(Λ)

= 1 (cf.

Def. 2.2.1, 3.1.1). Suppose that Φ = ΦS ⊗p/∈S φp is a pure tensor in the

space of π away from S. For each prime p /∈ S assume that

• πp has no local Bessel model of type (Λp, θp)

or (4.2)

• πp has a local Bessel model and mφp,Λp <∞.

Remark. The point of introducing the set S is so that we may formulate

our results without bothering about the value, even finiteness, of mφp,Λp .

If (4.2) holds for each prime p|N and we know a nice formula for mφp,Λp

for each p, we may assume that S = ∅. This is the case for almost every

representation listed in Table 2 - check further the remark at the end of

Chapter 2.

If π has a global Bessel model of type (Λ, θ), then for each place p of

Q, πp has a local Bessel model of type (Λp, θp) and each φp corresponds to

a (unique up to multiples) vector Bφp in the local Bessel model of πp.

42



Definition 4.2.1. For each Φ ∈ Vπ and a character Λ define

MS
Φ,Λ :=

1 if πp has no local Bessel model for some p /∈ S∏
p 6∈S p

mφp,Λp otherwise.

(4.3)

Remark. If πp is of type I, then mφp,Λp = c(Λp) by Sugano’s theorem 2.2.1.

The other spherical representations (type IIb, IIIb, IVd, Vd, VId) with

trivial central character admit local Bessel model if and only if Λ = 1. In

this case mφp,Λp = 0.

The following lemma is the base for our main results.

Lemma 4.2.1. Let L,M,L′,M ′ be positive integers such that

• L′|L, L′S = LS

• MS
Φ,Λ|M ′|M , M ′

S = MS .

If a local Bessel model exists at all p /∈ S, then the following relation holds:

BΦ(H(L,M))
∏

p|L′M ′
p/∈S

Bφp(hp(l
′,m′)) = BΦ(H(L′,M ′))

∏
p|LM
p/∈S

Bφp(hp(l,m)) .

(4.4)

Otherwise, BΦ(H(L,M)) = 0 for all integers L,M .

Proof. Observe first that if π does not have a global Bessel model of type

(Λ, θ), then both sides of (4.4) are zero. We may assume then that the

global Bessel model exists.

By uniqueness of local Bessel functionals,

BΦ(H(L,M)) = C
∏
p∈S

Bφp(hp(l,m))
∏
p/∈S

Bφp(hp(l,m))

for any positive integers L,M . The constant C can be found if we specialise

to LS and MSM
S
Φ,Λ:

BΦ(H(LS ,MSM
S
Φ,Λ)) = C

∏
p∈S

Bφp(hp(l,m))
∏
p/∈S

1

(recall that we set the normalisation Bφp(hp(0,mφp,Λp)) = 1 for p /∈ S), and

thus

BΦ(H(L,M)) = BΦ(H(LS ,MSM
S
Φ,Λ))

∏
p|LM
p/∈S

Bφp(hp(l,m)) .
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Using this equation with L′,M ′ as in the statement of the lemma, we

obtain the relation (4.4). Note that without the assumption MS
Φ,Λ|M ′ the

statement is still true, but we have zeros on both sides of the equality.

From this simple looking relation (4.4) we obtain a correspondence be-

tween the Fourier coefficients (4.1) that will be crucial for our applications.

We start with an auxiliary lemma.

Lemma 4.2.2. Let A ∈ GL2(Q), α ∈ Q×, γ =
(
A
α tA−1

)
, and let γf be the

image of γ in G(Af ). Then for any automorphic form Φ on G(A), any

matrix T ∈M sym
2 (Q) and g∞ ∈ G(R)+ we have

ΦT (g∞γf ) = Φα−1 tATA(γ−1
∞ g∞) ,

where γ∞ = γγ−1
f .

Proof. Using the fact that Φ is left G(Q)-invariant and the substitution

X = α−1AY tA, we obtain

ΦT (g∞γf ) =

∫
Msym

2 (Q)\Msym
2 (A)

ψ−1(tr (TX))Φ(u(X)g∞γf )dX

=

∫
Msym

2 (Q)\Msym
2 (A)

ψ−1(tr (TX))Φ(u(X)γγ−1
∞ g∞)dX

=

∫
Msym

2 (Q)\Msym
2 (A)

ψ−1(tr (TX))Φ(u(αA−1X tA−1)γ−1
∞ g∞)dX

= Φα−1 tATA(γ−1
∞ g∞) .

Theorem 4.2.1. Let π be an irreducible automorphic cuspidal represen-

tation of G(A) with trivial central character and Φ ∈ Vπ an automor-

phic form in its vector space. Assume that Φ is right IN -invariant for

some N ∈ N and let S be a subset of the set of primes dividing N . Let

S = S(d), and ψ be a fixed non trivial character of A/Q. Let Λ be a

character of T (A)/T (Q)T (R) such that Λ|A× = 1 and (4.2) holds. Then

for any L,M,L′,M ′ satisfying the conditions of Lemma 4.2.1 and such

that C(Λ)|M ′N , we have the following correspondence between the Fourier

coefficients (4.1):

|Cld(M
′N)|

|Cld(MN)|
∑

c∈Cld(MN)

Λ−1(tc)

∫
R×\T (R)

ΦφL,M (c)(H
−1
∞ mct∞)dt∞

∏
p|L′M ′
p/∈S

Bφp(hp(l
′,m′))
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=
∑

c∈Cld(M ′N)

Λ−1(tc)

∫
R×\T (R)

ΦφL′,M′ (c)
((H ′∞)−1mct∞)dt∞

∏
p|LM
p/∈S

Bφp(hp(l,m)) ,

(4.5)

where tc ∈ T (A) are representatives for c in Cld(MN) or Cld(M
′N) such

that tc = γcmcκc by strong approximation theorem (cf. Section 3.1), φL,M(c)

is defined as in (3.4),

H∞ :=

(
LM2

LM
1
M

)
and H ′∞ =

(
L′M ′2

L′M ′
1
M ′

)
.

Proof. In view of the relation (4.4), it suffices to compute the values

BΦ(H(L,M)).

Let ΦL,M(g) := Φ(gH(L,M)) for g ∈ G(A); because Φ is right IN -

invariant, ΦL,M is right invariant by

H∞INH
−1
∞ = {

∏
p<∞

(
∗ MN∗ LM2∗ LM∗
∗/M ∗ LM∗ L∗

∗N/LM2 ∗N/LM ∗ ∗/M
∗N/LM ∗N/L MN∗ ∗

)
∈ G(Qp) : ∗ ∈ Zp},

where H∞ :=

(
LM2

LM
1
M

)
∈ G(R)+. In particular, ΦL,M is right invari-

ant by TMN and K∗MN (defined at the beginning of Chapter 3).

Following the notation of Section 3.1, we can write

T (A) =
∐

c∈Cld(MN)

tcT (Q)T (R)TMN ,

where we choose tc ∈
∏

p<∞ T (Qp), and by strong approximation theorem

write tc = γcmcκc with γc ∈ GL2(Q), mc ∈ GL2(R)+ and κc ∈ K∗MN .

With this preparation we are ready to compute the valuesBΦ(H(L,M)).

BΦ(H(L,M)) =

∫
A×T (Q)\T (A)

Λ−1(t)ΦL,M
S (t)dt

=
∑

c∈Cld(MN)

∫
R×\T (R)

ΦL,M
S (tct∞)dt∞

∫
A×f T (Q)∩TMN\TMN

Λ−1(tct∞tMN)dtMN

Observe that if C(Λ) - MN , then the inner integral is equal to zero and

the equation (4.5) holds. Henceforth we assume that C(Λ)|MN . With this

assumption and using Lemma 4.2.2 twice, we have

BΦ(H(L,M)) =
1

|Cld(MN)|
∑

c∈Cld(MN)

Λ−1(tc)

∫
R×\T (R)

ΦL,M
S (γcmct∞)dt∞

45



=
1

|Cld(MN)|
∑

c∈Cld(MN)

Λ−1(tc)

∫
R×\T (R)

ΦL,M
S (t∞(γc)f )dt∞

=
1

|Cld(MN)|
∑

c∈Cld(MN)

Λ−1(tc)

∫
R×\T (R)

ΦL,M
Sc

(mct∞)dt∞

=
1

|Cld(MN)|
∑

c∈Cld(MN)

Λ−1(tc)

∫
R×\T (R)

ΦφL,M (c)(H
−1
∞ mct∞)dt∞ ,

where φL,M(c) is defined as in (3.4).

Corollary 4.2.1. Suppose that Φ is right invariant by IN1,N for some

N1|N . Then we get a simpler formula, where the sum runs over the ele-

ments of the ray class group Cld(MN1) and it suffices to require C(Λ)|M ′N1:

|Cld(M
′N1)|

|Cld(MN1)|
∑

c∈Cld(MN1)

Λ−1(tc)

∫
R×\T (R)

ΦφL,M (c)(H
−1
∞ mct∞)dt∞

∏
p|L′M ′
p/∈S

Bφp(hp(l
′,m′))

=
∑

c∈Cld(M ′N1)

Λ−1(tc)

∫
R×\T (R)

ΦφL′,M′ (c)
((H ′∞)−1mct∞)dt∞

∏
p|LM
p/∈S

Bφp(hp(l,m)) .

The rest of notation is as in Theorem 4.2.1.

In the next section we specialise the relation (4.5) to automorphic forms

that give rise to Siegel modular forms and obtain very general relations

between their Fourier coefficients. This will lead to further applications.

4.3 Application to Siegel modular forms

Let π = ⊗pπp be an irreducible automorphic cuspidal representation of

G(A) with trivial central character and such that π∞ = L(k, k), the lowest

weight representation of scalar minimal K-type of weight k. Let Φ be an

automorphic form in the space of π and let φ∞ be a lowest weight vector

of π∞. This means that

Φ(gk∞) = j(k∞, i2)−kΦ(g) for all k∞ ∈ K∞, g ∈ G(A) , (4.6)

where

(i) K∞ is a maximal compact subgroup of G(R)+ such that any k∞ in

K∞ is of the form
(
A B
−B A

)
,

(ii) i2 := i12,
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(iii) j(( A B
C D ) , i2) = det(Ci2 +D).

Furthermore, assume that there are integers N1, N2 with N1|N2 such that Φ

is right invariant by IN1,N2 . Let S be a subset of the set of primes dividing

N2 such that (4.2) holds for each prime p /∈ S.

Now, define

F (Z) := Φ(g)j(g, i2)kµ(g)−k , (4.7)

where g ∈ G(R) is such that g · i2 = Z and

( A B
C D ) · i2 := (Ai2 +B)(Ci2 +D)−1 .

Such a function F is holomorphic and satisfies

∀
γ=(A B

C D )∈Γ0(N1,N2)
F |kγ(Z) := µ(γ)kj(γ, Z)−kF (γ · Z) = F (Z) ; (4.8)

it is a cuspidal Siegel modular form of degree 2, level Γ0(N1, N2) and weight

k that is an eigenform of the local Hecke algebra at all primes p - N2.1 It

follows that F admits a unique Fourier expansion

F (Z) =
∑
T∈P2

a(F, T )e(tr (TZ)) , where e(x) := e2πix ,

where the sum runs over the matrices in the set P2 defined in (3.1).

Observe that the correspondence (4.7) is bijective in a sense that to any

Siegel cusp form F that satisfies the above conditions and gives rise to an

irreducible representation we can attach an automorphic form Φ via

Φ(g) := F |kg∞(i2) , g = gQg∞g0 ∈ G(Q)G(R)+IN1,N2 = G(A) ; (4.9)

Φ is called the adelisation of F .

With this preparation we may begin our way to formulating a version

of Corollary 4.2.1 for Siegel modular forms. For the rest of this section we

assume that ψ =
∏

p≤∞ ψp is the character of A/Q such that

• the conductor of ψp is Zp for all p <∞,

• ψ∞(x) = e(x) for x ∈ R.

Lemma 4.3.1. Let Φ be an automorphic form on G(A) that satisfies the

equation (4.6), and let F be as in (4.7). Then for any matrix T ∈M sym
2 (Q)

1In fact, these functions, coming from irreducible representations, span the space of
Siegel cusp forms of degree 2, level Γ0(N1, N2) and weight k.
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and g∞ ∈ G(R)+ we have

ΦT (g∞) = µ(g∞)kj(g∞, i2)−ka(F, T )e(tr (T (g∞ · i2))) .

Proof. It is easy to check that the automorphy factor j defined above has

the property

j(g1g2, Z) = j(g1, g2 · Z)j(g2, Z) .

Hence,

ΦT (g∞) =

∫
Msym

2 (Q)\Msym
2 (A)

ψ−1(tr (TX))Φ(u(X)g∞)dX

=

∫
Msym

2 (Z)\Msym
2 (R)

e(−tr (TX))µ(g∞)kj(u(X)g∞, i2)−k

F (u(X)g∞ · i2)dX

= µ(g∞)kj(g∞, i2)−k
∑
T ′

a(F, T ′)∫
Msym

2 (Z)\Msym
2 (R)

e(−tr (TX))e(tr (T ′(g∞ · i2)))e(tr (T ′X))dX

= µ(g∞)kj(g∞, i2)−ka(F, T )e(tr (T (g∞ · i2))) .

Theorem 4.3.1. Let π, Φ, F and N1, N2 be as above. Let S = S(d) and

let Λ be a character of T (A)/T (Q)T (R) such that Λ|A× = 1. Let S be a

subset of the set {p : p|N2} such that (4.2) holds for all p /∈ S. Then for

any L,M,L′,M ′ satisfying the conditions of Lemma 4.2.1 and such that

C(Λ)|M ′N1, we have the following relation between the Fourier coefficients

of F :

|Cld(M
′N1)|

|Cld(MN1)|

(
L′M ′

LM

)k ∑
T∈H1(dM2,L;Γ0(N1))

Λ−1(T )a(F, T )
∏

p|L′M ′
p/∈S

Bφp(hp(l
′,m′))

=
∑

T ′∈H1(dM ′2,L′;Γ0(N1))

Λ−1(T ′)a(F, T ′)
∏
p|LM
p/∈S

Bφp(hp(l,m)) . (4.10)

Proof. We specialise Corollary 4.2.1 to Φ that is the adelisation of F . It is

enough to compute the following integral.∫
R×\T (R)

ΦφL,M (c)(H
−1
∞ mct∞)dt∞

Lemma 4.3.1
= (LM)−ka(F, φL,M(c))
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·
∫
R×\T (R)

e(tr (φL,M(c)(H−1
∞ mct∞ · i2)))dt∞

= (LM)−ka(F, φL,M(c))

∫
R×\T (R)

e(tr (Sc(mct∞ · i2)))dt∞

= (LM)−ka(F, φL,M(c))

∫
R×\T (R)

e(tr (Si2))dt∞

= r(LM)−ka(F, φL,M(c))e−2πtrS ,

where r =
∫
R×\T (R)

dt∞. Now, recall from Chapter 3 that

{φL,M(c) : c ∈ Cld(MN1)} = H1(dM2, L; Γ0(N1)) .

Remark. Theorem 4.3.1 imposes two extra conditions on M ′ that depend

on Λ: MS
Φ,Λ|M ′ and C(Λ)|M ′N1. However, thanks to Lemma 2.3.1 and

Sugano’s theorem 2.2.1, we only need to assume that MS
Φ,Λ|M ′ and

c(Λp) ≤ mφp,Λp + n1,p for p ∈ S .

So, in particular, if we may take S to be the emptyset (as is the case when,

for example, F has level Γ0(N1, N2) with N1, N2 square-free, and at primes

p|N2, πp, Λp do not satisfy two very specific conditions stated in Corollary

4.4.2), we may reduce the conditions on M ′ to MS
Φ,Λ|M ′.

Remark. The proofs of Theorem 4.2.1 and 4.3.1 also provide the equality

BΦ(H(L,M)) =


r(LM)−k

|Cld(MN1)|e
−2πtrS

∑
T∈H1(dM2,L;Γ0(N1))

Λ−1(T )a(F, T ), C(Λ)|MN1

0, otherwise,

where r is the non-zero constant depending only on S and the choice of

normalisation for the Haar measure.

If in Theorem 4.3.1 we take as S the set of all primes dividing N2, then

Sugano’s theorem ensures that MS
Φ,Λ =

∏
p-N2

pordpC(Λ), and thus we can

simplify Theorem 4.3.1 to the following form:

Corollary 4.3.1. Let F be a Siegel cusp form of degree 2, level Γ0(N1, N2)

and weight k. Suppose that F is an eigenform of the local Hecke alge-

bra at all primes p - N2
2. Let d be a fundamental discriminant and let

2It is enough to assume that F is an eigenform of the Hecke operators T (p) and T (p2)
at p - N2. For the definition of these Hecke operators see for example [18], Chapter 5 or
[1].
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L,M,L′,M ′ be positive integers such that L′|L, M ′|M , (L,N∞2 ) = (L′, N∞2 )

and (M,N∞2 ) = (M ′, N∞2 ) (cf. Section 1.5). Then for all characters Λ of

H1(dM ′2, L,Γ0(N1)) ∼= Cld(M
′N1),

|Cld(M
′N1)|

|Cld(MN1)|

(
L′M ′

LM

)k ∑
T∈H1(dM2,L;Γ0(N1))

Λ−1(T )a(F, T )
∏

p|L′M ′
p-N2

Bφp(hp(l
′,m′))

=
∑

T ′∈H1(dM ′2,L′;Γ0(N1))

Λ−1(T ′)a(F, T ′)
∏
p|LM
p-N2

Bφp(hp(l,m)) . (4.11)

Proof. This follows immediately from Theorem 4.3.1 (for S = {p : p|N2})
and Proposition 3.11, [50], which states that in our setting the following

conditions are equivalent:

(i) F is an eigenform of the local Hecke algebra at all primes p - N2.

(ii) If π′, π′′ are two irreducible cuspidal representations both of which

occur as subrepresentations of the representation π associated with

F , then π′p
∼= π′′p for all primes p - N2.

As a result, F =
∑

i Fi, where each Fi has the same local data at p - N2

and is as in Theorem 4.3.1.

4.4 Applications to non-vanishing of Fourier

coefficients

Formula (4.10) yields many relations between Fourier coefficients of Siegel

modular forms that are invariant under the action of Γ0(N1, N2). It gives

us, among others, an insight on the existence of Fourier coefficients a(F, T ),

where both content and discriminant of the matrix T are smallest possible.3

Proposition 4.4.1. Let Φ, F,N1, N2 be as in Theorem 4.3.1, and let L,M ,

d be such that a(F, T0) 6= 0 for some T0 ∈ H1(dM2, L; Γ0(N1)). Then there

exists a character Λ of Cld(MN1) ∼= H1(dM2, L; Γ0(N1)) such that∑
T∈H1(dM2,L;Γ0(N1))

Λ−1(T )a(F, T ) 6= 0 . (4.12)

Suppose that S is a set of primes dividing N2 such that φp is optimal for all

p /∈ S (cf. Definition 2.3.2). Then for any character Λ satisfying (4.12),

3The formulas that one may obtain from the action of Hecke operators allow only to
reduce the content of T .
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we have MS
Φ,ΛMS |M and there exists a T ∈ H1(d(MS

Φ,ΛMS)2, LS ; Γ0(N1))

so that a(F, T ) 6= 0. In particular, if LS = 1, then a(F, T ) 6= 0 for a

primitive matrix T .

Proof. This is a direct corollary from Theorem 4.3.1. If a(F, T0) 6= 0

for some T0 ∈ H1(dM2, L; Γ0(N1)), then there exists a character Λ of

H1(dM2, L; Γ0(N1)) that satisfies (4.12). By the remark from previous

section, it also follows that BΦ(H(L,M)) 6= 0. Let S be as stated above

and choose M ′ = MS
Φ,ΛMS . Then, as explained in the previous section, all

the conditions of Theorem 4.3.1 hold. Now, because Bφp(hp(0,m
′
p)) 6= 0

for all p|M ′ outside S (where m′p := ordpM
′), the left hand side of (4.10)

is non-zero for L′ = LS . The hypothesis follows.

If we choose S to be simply the set of all primes dividing N2, then φp

is automatically optimal for all primes outside S. Furthermore, using the

argument of Corollary 4.3.1, it suffices to assume that F is an eigenform

of the local Hecke algebra at primes not dividing N2. Hence, we get the

following result:

Corollary 4.4.1. Let F be a cuspidal Siegel modular form of degree 2,

level Γ0(N1, N2) and weight k. Assume that F is an eigenform of the local

Hecke algebra at all primes p - N2. Suppose that a(F, T0) 6= 0 for some

T0 ∈
⋃
d,M,LH1(dM2, L; Γ0(N1)) (automatic if N1 = 1). Then a(F, T ) 6= 0

for some T such that contT |N∞2 .

Observe that in the case N1 = 1, this corollary is a special case of a

theorem due to Yamana [62]; the new case is N1 > 1. Yamana’s theorem

and similar results (due to Zagier [63], Ibukiyama and Katsurada [18])

played a crucial role in theorems of Saha and Schmidt ([51], [52], [49]),

which concerned determination of Siegel modular forms of degree 2 by

fundamental Fourier coefficients. In the next chapter we provide more

information on this topic and emphasize the importance of non-vanishing

of a Fourier coefficient a(F, T ) with content of T smallest possible on the

example of paramodular forms. The proof will be carried out using classical

methods, but we hope to extend it in the future basing on the results in

this chapter.

The advantage of our proof, in comparison to the one given by Ya-

mana4, is a usage of representation-theoretical structure. Thanks to this,

Corollary 4.4.1 may be improved or extended alongside the development

4Yamana generalised a method of Zagier [63], which based on the Taylor expansion
of the Fourier-Jacobi coefficients.
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in representation theory. A good example of this interplay is the following

result, which makes use of Theorems 2.3.1, 2.3.2, 2.3.3.

Corollary 4.4.2. Let F be a cuspidal Siegel modular form of degree 2,

weight k, level Γ0(N1, N2) with N1, N2 square-free. Suppose that the adeli-

sation of F generates an irreducible automorphic representation π. Assume

also that F is an eigenform of the U(p)-operator for all primes p|N2

N1
and an

eigenform of the local Hecke algebra at p - N2
5. Suppose that F has a non-

zero Fourier coefficient a(F, T0) for some T0 ∈ H1(dM2, L; Γ0(N1)) and

Λ is such that (4.12) holds. Assume moreover that none of the following

specific conditions holds at p|N2:

• πp is of type IVa, c(Λp) = 1,
(

Qp(
√
d)

p

)
= 1 and Λp(1, p) = σ($)

(c.f. Theorem 2.3.1);

• πp is of type IIa,
(

Qp(
√
d)

p

)
= 1 and Λp(1, p) = −ωp = Λp(p, 1)

(c.f. Theorem 2.3.2).

Then F has a non-vanishing primitive Fourier coefficient, i.e. a(F, T ) 6= 0

for some matrix T with contT = 1. Moreover, if M |N1 and we can choose

Λ so that c(Λp) ≤ 1 for all p|M , then F has a non-zero fundamental Fourier

coefficient.

Proof. This follows from a combination of Proposition 4.4.1 and Theorems

2.3.1, 2.3.2, 2.3.3, which allow us to take S = ∅.

The above results rely on a seed matrix T0 ∈ H1(dM2, L; Γ0(N1)) such

that a(F, T0) 6= 0. The question naturally arises: does such a T0 always

exist? In this context we present two results. The first one follows from

Corollary 3.2.1.

Proposition 4.4.2. Let F 6= 0 be a cuspidal Siegel modular form of level

Γ0(1, N2), weight k. Then there exist a fundamental discriminant d and in-

tegers L,M such that a(F, T0) 6= 0 for some matrix T0 ∈ H1(dM2, L; Γ0(1)).

The second one relies on a well-known construction called Siegelisation.

Definition 4.4.1. Fix positive integers N1, N2 such that N1|N2, and let F

be a cuspidal Siegel modular form of level Γ0(N1, N2), weight k. Define the

5As in Corollary 4.3.1, at primes p - N2 it is enough to assume that F is an eigenform
of the Hecke operators T (p), T (p2); for the definition of the U(p)-operator see [52]. In
particular, the conditions on F in Corollary 4.4.2 imply that F is a newform in the sense
of [9].
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Siegelisation F ′ of F to be the Siegel modular form of level Γ0(1, N2) given

by

F ′ :=
∑

γ∈Γ0(N1)\SL2(Z)

F |k

(
γ

tγ−1

)
. (4.13)

Proposition 4.4.3. Let F be a cuspidal Siegel modular form of weight k

and level Γ0(N1, N2), and F ′ its Siegelisation.

1. Suppose F is an eigenform for the Hecke algebra at some prime p,

p - N1. Then so is F ′.

2. The adelisations of F and F ′ generate the same automorphic repre-

sentation.

3. Assume that F is an eigenform of the local Hecke algebra at all primes

p - N2. Suppose a(F ′, T ) 6= 0 for T ∈ H(dM2, L′; Γ0(1)). Then

a(F, T0) 6= 0 for some T0 ∈ H(dM2, L; Γ0(N1)), where L = (L′, N∞2 ).

Proof. Let Φ,Φ′ be the adelisations of F, F ′ respectively. By the definition

(4.9) of the adelisation, it is clear that at each place p - N1, the group

G(Qp) acts on Φ and Φ′ in the same way. Hence the property of being

an eigenform for the local Hecke algebra at p - N1 is preserved by the

Siegelisation.

As we mentioned at the beginning of Section 4.3, F =
∑

i Fi, where

each of Fi generates an irreducible automorphic cuspidal representation πi.

Write πi = ⊗πi,p and let Φi = ⊗φi,p be the adelisation of Fi. Denote by

F ′i the Siegelisation of Fi, Φ′i = ⊗φ′i,p its adelisation, and let π′i be the cor-

responding automorphic representation. From a representation-theoretic

point of view, at each place p and for each i,

φ′i,p =
∑

γ∈Γ0(pnpZp)\SL2(Zp)

πi,p(

(
γ

tγ−1

)
)φi,p ,

where np = ordpN1; so φ′i,p is a linear combination of the elements in the

vector space of πi,p. Hence for each i, π′i,p is a subrepresentation of an

irreducible representation πi, and thus π = π′.

To prove the last part of the proposition, we first express Fourier coef-

ficients of F ′ in terms of Fourier coefficients of F . By the definition,

F ′(Z) =
∑

γ∈Γ0(N1)\SL2(Z)

F (γZ tγ) =
∑
T

∑
γ

a(F, tγ−1Tγ−1)e(tr (TZ)),
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and thus

a(F ′, T ) =
∑

γ∈SL2(Z)/Γ0(N1)

a(F, tγTγ).

Therefore, if F ′ 6= 0, then a(F, tγTγ) 6= 0 for some γ ∈ SL2(Z)/Γ0(N1)

and T ∈ P2. Moreover, because F ′ is also an eigenform for the local

Hecke algebra at primes p - N2, by Corollary 4.4.1 we can guarantee that

contT |N∞2 . Hence, because the content and discriminant of tγTγ are the

same as for T , F has a non-zero Fourier coefficient a(F, T0) as stated in the

hypothesis.

Remark. An important assumption in the above proposition is that the

Siegelisation of a non-zero modular form is non-zero. However, thanks

to the second part of this proposition, we know that the associated au-

tomorphic representation stays the same. When N1, N2 are square-free, a

necessary condition for the Siegelisation of a paramodular form to be non-

zero is that the dimension of the space of P02-fixed vectors is smaller or

equal to the dimension of the space of P1-fixed vectors for a fixed represen-

tation πp at each place p|N1. A quick look at Table 1 tells us that this is

not the case only if πp is of type VIc for some p|N1.

4.5 Application to Maass relations

Classical Saito-Kurokawa lifts are the lifts from classical cusp forms f ∈
S

(1)
2k−2(SL2(Z)) with k even to Siegel cusp forms F ∈ S

(2)
k (Sp4(Z)). It is

known (eg. [35]) that the space of these lifts consists precisely of the cusp

forms whose coefficients satisfy the so-called Maass relations :

a(F,

(
a b/2

b/2 c

)
) =

∑
r| gcd(a,b,c)

rk−1a(F,

(
ac
r2

b
2r

b
2r

1

)
) . (4.14)

However, the notion of a classical Saito-Kurokawa lift may be generalised

to a lift from a cusp form f ∈ S
(1)
2k−2(Γ0(N)) to F ∈ S

(2)
k (Γ) for some

congruence subgroup Γ. In fact, depending on a choice of generalisation,

one may obtain more than one lift from a single f ∈ S(1)
2k−2(Γ0(N)) (cf. [54]).

In any case, the automorphic representations containing the corresponding

vectors are nearly equivalent, i.e. the local components are equivalent at

almost every place; they are nearly equivalent to a constituent of a global

induced representation of a proper parabolic subgroup of G(A), and are

called CAP (cuspidal associated to parabolic) representations.
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The natural question arises: do the coefficients of the generalised lifts

also satisfy a version of Maass relations? We are going to show that the

answer is YES.

Let π, Φ, F be as in Section 4.3, that is F is a cuspidal Siegel mod-

ular form invariant under the action of Γ0(N1, N2) that is an eigenform

of the local Hecke algebra at primes p - N2 and that gives rise to an ir-

reducible automorphic representation π. Suppose that for primes p - N2,

πp = χp1GL(2) o χ−1
p with an unramified character χp of Q×p (a representa-

tion of type IIb according to Table 1). Note that these are non-tempered,

non-generic representations. The set of π obtained in this way is precisely

the set of CAP representations attached to the Siegel parabolic subgroup

of G(A) (cf. [9]).

Lemma 4.5.1. For representation π as above, any vector Φ̃ = ⊗pφ̃p in

the vector space Vπ of π and any non-degenerate matrix S ∈M sym
2 (Q), we

have:

Φ̃S(tg) = Φ̃S(g) for all g ∈ G(A) and t ∈
∏
p-N2

TS(Qp)
∏
p|N2

12 .

Proof. Let Φ̃ = ⊗pφ̃p be as in the lemma, and let S = {p : p|N2}. Without

loss of generality we may assume g = 12. Let V S be the subspace of Vπ

generated by all vectors of the form ⊗p∈S φ̃p ⊗p/∈S ψp with ψp ∈ Vπp . The

right action of ⊗p/∈SG(Qp) on V S makes V S a representation isomorphic

to ⊗p/∈Sπp. Define

β : V S → C , β(Ψ) := ΨS(1) =

∫
U(Q)\U(A)

Ψ(u)θ−1
S (u)du .

Note that β(π(t)Ψ) = ΨS(t). We need to show that β(π(t)Φ̃) = β(Φ̃) for

all t ∈
∏

p/∈S T (Qp). This is trivial if β ≡ 0. So assume β 6≡ 0. Let

Φ′ = ⊗p∈S φ̃p ⊗p/∈S φ′p be such that β(Φ′) 6= 0 .

For each p /∈ S we get a functional βp on Vπp via

βp(ψp) := β(ψp ⊗q∈S φ̃q ⊗q /∈S∪{p} φ′q) .

Then βp(φ
′
p) 6= 0 and thus βp is a non-zero functional on Vπp . Clearly, βp

satisfies

βp(πp(u)ψp) = θS(u)βp(ψp) for all ψp ∈ Vπp and u ∈ U(Qp)
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By Corollary 4.2 of [37], the matrix S satisfies the conditions of Lemma

4.1, [35], and therefore by this lemma

• the space of such functionals βp is one-dimensional,

• βp(πp(t)ψp) = βp(ψp) for all ψp ∈ Vπp and t ∈ T (Qp).

So there exists a constant CS such that

β(Ψ) = CS
∏
p/∈S

βp(ψp)

whenever Ψ ∈ V S corresponds to ⊗p∈S φ̃p⊗p/∈S ψp. Hence β(π(t)Φ̃) = β(Φ̃)

for all t ∈
∏

p/∈S T (Qp).

Lemma 4.5.2. Let F,N1 be as above, S = S(d), and L,M any positive

integers. Then for any c1, c2 ∈ Cld(MN1),

a(F,L (M 1 )Sc1 (M 1 )) = a(F,L (M 1 )Sc2 (M 1 )) .

Proof. Let {tc}c be a set of representatives of Cld(MN1). We may choose

tc so that tc,p = 12 for all p|N2. Indeed, if t̃ ∈ T (Q) is such that t̃p = tc,p

for all p|N2, then tc = t̃
∏

p|N2
12

∏
p-N2

t̃−1
p tc,p. From the proofs of Theorem

4.2.1 and 4.3.1, and using their notation, we get

a(F,L (M 1 )Sc (M 1 )) = (LM)ke2πtrS 1

r

∫
R×\T (R)

ΦφL,M (c)(H
−1
∞ mct∞)dt∞ ,

where

ΦφL,M (c)(H
−1
∞ mct∞) = ΦS(tct∞H(L,M))

Lemma 4.5.1
= ΦS(t∞H(L,M))

does not depend on c.

Hence, it makes sense to write a(F ; dM2, L) for any Fourier coefficient

of F that is of the form a(F,L (M 1 )Sc (M 1 )) for some c ∈ Cld(MN1), or

in another words, for a(F, T ) with T ∈ H1(dM2, L; Γ0(N1)).

The following theorem generalises Theorem 5.1, [35] to cuspidal Siegel

modular forms of level Γ0(N1, N2) with N2 > 1.

Theorem 4.5.1. Let F be as above and S = {p : p|N2}. For any funda-

mental discriminant d and any positive integers L,M , Fourier coefficients
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of F satisfy the following Maass relations:

a(F ; dM2, L) =
∑
r|L

gcd(r,N2)=1

rk−1a(F ; d

(
LM

rLS

)2

, LS) . (4.15)

Hence, if (
a b/2

b/2 c

)
= L

(
M

1

)
Sc

(
M

1

)
for some c ∈ Cld(MN1),

a(F,

(
a b/2

b/2 c

)
) =

∑
r| gcd(a,b,c)
gcd(r,N2)=1

rk−1a(F,LS

(
ac

(rLS)2
b

2rLS
b

2rLS
1

)
) ,

where LS = (gcd(a, b, c), N∞2 ).

Proof. Recall Corollary 4.3.1. If we take Λ to be a trivial character6 in the

formula (4.11), and M ′ = MS , L′ = LS ,

a(F ; dM2, L) =

(
LM

LSMS

)k
a(F ; dM2

S , LS)
∏
p|LM
p/∈S

Bφp(hp(lp,mp)) ,

where lp = ordpL, mp = ordpM . Similarly, for any divisor r of L,

a(F ; d

(
LM

rLS

)2

, LS) =

(
LM

rLSMS

)k
a(F ; dM2

S , LS)
∏

p|LM/r
p/∈S

Bφp(hp(0, lp+mp−rp)) .

Note that the last product can actually be taken over primes p|LM that

are not in S. Indeed, in the product over p|LM/r, p /∈ S we miss only those

elements for which rp = lp and mp = 0. But in this case Bφp(hp(0, lp+mp−
rp)) = Bφp(hp(0, 0)) = 1 by Theorem 2.2.1.

Moreover, it is known ([35], Theorem 2.1) that the spherical vectors of

the representations of type IIb satisfy the equation

Bp(h(l,m)) =
l∑

i=0

p−iBp(h(0, l +m− i))

6It makes sense to take Λ = 1, because the local representations that we consider
here have a unique local Bessel model (cf. Table 2), and for this Bessel model Λp = 1.
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for all l,m ≥ 0. Hence, the equation (4.15) holds if and only if

∏
p|LM
p/∈S

l∑
i=0

p−iBφp(hp(0, lp +mp − i)) =
∑
r|L/LS

1

r

∏
p|LM
p/∈S

Bφp(hp(0, lp +mp − rp)) ,

which is true.

Corollary 4.5.1. Let F,N1, N2 be as above. For any matrix T =L
(

a b/2
b/2 c

)
such that

(
b2−4ac

p

)
= −1 for every p|N1, and L|N∞2 ,

a(F,L

(
a b/2

b/2 c

)
) =

∑
r| gcd(a,b,c)
gcd(r,N2)=1

rk−1a(F,L

(
ac
r2

b
2r

b
2r

1

)
).

Remark. One of the main differences between the classical Maass relations

(4.14) and the Maass relations (4.15) is that the coefficients a(F, T ) on the

right hand side of the first equality have the matrix T of content 1, and in

particular, the (2, 2)-entry of T equals 1. In general, Saito-Kurokawa lifts

do not enjoy this property. Indeed, there exist paramodular forms that are

Saito-Kurokawa lifts ([54]), but all their Fourier coefficients a(F, T ) have

the (2, 2)-entry of T divisible by N (cf. Section 5.1.1). Even though our

result does not apply to paramodular forms (as representations of type IIb

are not generic), we treat this fact as an indication that a further study

of Fourier coefficients of Siegel modular forms of higher levels might be

necessary to distinguish the cases where our result could be improved.
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Chapter 5

Paramodular forms

In this chapter we present a result concerning non-vanishing of fundamental

Fourier coefficients of certain paramodular forms. This result, together

with the consecutive steps of its proof and limitations of classical methods,

encouraged us to look from a broader point of view and inspired works on

relations between Fourier coefficients, which we carried out in Chapter 4.

However, it turns out that the main relation (4.10) for Siegel modular

forms that we obtained in Chapter 4 do not capture any primitive coeffi-

cient of paramodular forms. It is because, as we explain below, the matrices

occurring in the Fourier expansion of paramodular forms always have the

(2, 2)-entry divisible by the level, whereas the relation (4.10) concerns only

those whose (2, 2)-entry is coprime to the level (cf. Section 3.3). This

situation makes our main theorem of this chapter even more important.

The main objects of this chapter are paramodular forms and their

Fourier coefficients. Nevertheless, especially in the first two sections, we

refer to the objects that may be defined for other Siegel modular forms

as well. We also provide historical background and motivation for our

research.

5.1 Preliminaries

5.1.1 Paramodular forms and Jacobi forms

A holomorphic function F : H2 → C defined on the Siegel upper half-space

H2 = {X + iY : X, Y ∈M2(R) symmetric, Y positive definite}
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is a paramodular form of weight k and level N if

F |kγ(Z) = F (Z) for any γ ∈ Γpara(N)

according to the action (4.8), where

Γpara(N) := Sp4(Q) ∩


Z NZ Z Z

Z Z Z Z/N

Z NZ Z Z

NZ NZ NZ Z

 .

We are only interested in the case when F is a cusp form, that is, F vanishes

at all the cusps of the group Γpara(N); we denote this set by S
(2)
k (Γpara(N)).

All Siegel modular forms that we encountered in Chapter 4, i.e. that are

associated to irreducible automorphic cuspidal representations of G(A), are

cusp forms. As we saw, they have a unique Fourier expansion

F (Z) =
∑

T= tT,T>0
half-integral

a(F, T )e(tr (TZ)) . (5.1)

Moreover, it is easy to see that the Fourier coefficients a(F, T ) satisfy

a(F, tATA) = a(F, T ) for all A ∈ Γ0(N) . (5.2)

If we expand (5.1) in terms of Z =

(
τ z

z τ ′

)
and T =

(
n r/2

r/2 m

)
, we

obtain a Fourier-Jacobi expansion of F ,

F (Z) =
∑
m≥0

4nm−r2≥0

a(F,
(

n r/2
r/2 m

)
)e(nτ)e(rz)e(mτ ′) =

∑
m≥0

φm(τ, z)e(mτ ′) ,

where φm is a Jacobi form of weight k and index m. Jacobi forms of

weight k, index m and level Γ ⊆ SL2(Z), denoted Jk,m(Γ) (or Jk,m(N) if

Γ = Γ0(N)), are invariant under the action of Γ n Z2 as described in [12].

Actually, the group that acts on the space of Jacobi forms is a Jacobi group

GL2(R)nHR, where HR is the Heisenberg group which is R2×R as a set.

Remark. The Jacobi group embeds into GSp4(R) via

(g, ((λ, µ), κ)) 7−→
(
a b

det g
c d

1

)( 1 µ
λ 1 µ κ

1 −λ
1

)
, where g =

(
a b

c d

)
.
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The image of this map acts on the space M
(2)
k (Γ(2)) for any congruence

subgroup Γ(2) of Sp4(Z), and agrees with the action of the Jacobi group.

Hence, it is easy to see that if Γ = Γpara(N), then each Fourier-Jacobi

coefficient φm is a Jacobi form of level 1. Moreover, one can also show that

for paramodular forms of level N , φm 6= 0 only if N |m. In other words,

a(F,
(

n r/2
r/2 m

)
) 6= 0 , F ∈ S(2)

k (Γpara(N)) =⇒ N |m.

This follows from the definition of F and comparing the coefficients in the

equality

F (Z) = F
(
Z +

(
0

1/N

))
=

∑
m≥0

4nm−r2≥0

a(F,
(

n r/2
r/2 m

)
)e(nτ)e(rz)e(mτ ′)e(m/N).

In consequence, the relation (4.3.1) misses all the primitive coefficients of

paramodular forms. It is because the set H1(dM2, 1; Γ0(N)) that would

occur in the summand for paramodular forms of level N , consists only of

the elements that have the (2, 2)-entry coprime to N , as we explained in

Lemma 3.3.1.

5.1.2 Modular forms of half-integral weight

Modular forms of half-integral weight are holomorphic functions defined

on the complex upper half plane H1 that are holomorphic at cusps and

are invariant under the action of congruence subgroups of Γ0(4) in a sense

similar to (4.8), but with k ∈ 1
2
Z. However, if we left it without any change,

the space of such functions would be zero for any congruence subgroup of

SL2(Z); see for example [23]. Hence we choose the square root having

argument in (−π/2, π/2] and change the automorphy factor (cz + d)k to

the k-th power of (−1)(d−1)/2)
(
c
d

)√
cz + d in case c 6= 0.1 We denote the

space of modular forms of weight k and level Γ0(4N) by M
(1)
k (4N), and the

subset of cusp forms by S
(1)
k (4N).

We recall now a few useful facts. Let φm(τ, z) ∈ Jk,m(Γ) be a Jacobi

form coming from a Fourier-Jacobi expansion as above. It can also be

written as

φm(τ, z) =
∑

0≤µ<2m

hµ(τ)
∑
r∈Z

r≡µ (mod 2m)

e

(
r2

4m
τ

)
e(rz) ,

1N.B., (−1)(d−1)/2)
(
c
d

)√
cz + d = θ(γz)/θ(z) for γ ∈ Γ0(4).
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where

hµ(τ) =
∑
D≥0

D≡−µ2 (mod 4m)

a(F,

(
D+µ2

4m
µ/2

µ/2 m

)
)e

(
D

4m
τ

)
.

Note that the matrix

(
D+µ2

4m
µ/2

µ/2 m

)
has a discriminant −D.

Theorem 5.1.1 (Eichler, Zagier; [12]). Consider a map that to a Jacobi

form φm(τ, z) ∈ Jk,m(1) attaches a function h(τ) :=
∑

0≤µ<2m hµ(4mτ).

Then h ∈M (1)
k−1/2(4m). Moreover, if m is prime and k even, such map is an

isomorphism onto the space M
(1),+
k−1/2(4m) of modular forms in M

(1)
k−1/2(4m)

whose D-th Fourier coefficient is zero for all D with
(−D
m

)
= −1.

This theorem was extended by Manickam and Ramakrishnan in [29]

to Jacobi cusp forms of level Γ0(N) and even weight. They constructed

a linear map J cusp

k,m (N) → S
(1)
k−1/2(4mN) that commutes with the action of

Hecke operators.

Theorem 5.1.1 gives us a tool to construct modular forms of half-integral

weight out of Fourier-Jacobi expansion of paramodular forms; and, accord-

ing to the remark above, we can use for this purpose any Jacobi form

occurring in the expansion. The next theorem gives us an insight into

the nature of Fourier coefficients of modular forms of half-integral weight.

Because the coefficients a(hµ, n) of the hµ constructed above are defined

in terms of the Fourier coefficients of a Siegel modular form, two theo-

rems below will be crucial in our investigations of the Fourier coefficients

of paramodular forms. The second one is especially important as it will

allow us to reach the paramodular forms that occur in the statement of the

paramodular conjecture.

Theorem 5.1.2 (Saha; [49]). Let k ≥ 2 and let N be a square-free integer.

Suppose that f ∈ S(1)
k+1/2(4N) is non-zero. Then, one has the lower bound

#{0 < D < X : D square-free, a(f,D) 6= 0} �f,δ X
δ ,

where δ > 0 is an absolute constant (any value of δ < 5/8 is admissible).

In particular, there are infinitely many square-free integers D such that

a(f,D) 6= 0.

Theorem 5.1.3 (Li; [27]). Let N be an odd and square-free integer and

0 6= f ∈ S(1)
3/2(4N).Then for any finite set of primes S, there are infinitely

many square-free integers D satisfying a(f,D) 6= 0 and gcd(D, l) = 1 for

all l ∈ S.

62



Remark. If a modular form f is twisted by a character, one can slightly

weaken the assumption about N in two theorems above (cf. [51], [27]). In

any case, N cannot be divisible by cubes.

5.1.3 Hecke operators

As in the theory of classical modular forms, one can define Hecke operators

on the space of Siegel modular forms of degree 2 ([1]). The ones of special

interest to us are2

T (p) := Γpara(N)

(
1

1
p
p

)
Γpara(N)

and

T (p2) := Γpara(N)

(
1
p
p2

p

)
Γpara(N)

for p - N , and

U(p) := Γpara(N)

(
1

1
p
p

)
Γpara(N)

for p | N . They act on the space of Siegel modular forms of degree 2

according to the following rule. If Γpara(N)αΓpara(N) =
∐

i Γ
para(N)αi is a

coset decomposition, then

F |kΓpara(N)αΓpara(N) = F |k
∐
i

Γpara(N)αi =
∑
i

F|kαi ,

where the action F |kαi is as in (4.8). We will write down the action of the

operators U(p) and T (p) + T (p2) explicitly in Section 4.4.

We say that F ∈ Γpara(N) is a Hecke eigenform if it is an eigenform of

the operators T (p), T (p2) for all p - N and U(p) for all p|N .

Another useful operator is the Fricke involution

µN :=
1√
N

(
N

−1
1

−N

)
.

It normalizes Γpara(N), and since µ2
N = −14, the space S

(2)
k (Γpara(N))

decomposes into µN -eigenspaces S
(2)
k (Γpara(N))± with eigenvalues ±1. If

F|kµN = εF for F ∈ S(2)
k (Γpara(N)), then the Fourier coefficients of F pos-

sess the symmetry

a(F,
(

n r/2
r/2 m

)
) = εa(F,

(
m/N −r/2
−r/2 nN

)
) . (5.3)

2Note the resmblence of these operators to the ones introduced in Theorem 2.3.3.

63



5.1.4 Newforms and oldforms

There are a few attempts to define a newform theory for Siegel modular

forms of degree n greater than 1. In the classical case (n = 1), Atkin and

Lehner [3] described the space of newforms as the orthogonal complement3

of the space of oldforms, which consists of modular forms that are obtained

from modular forms of lower level by the action of the U(p) operators for

p|N . Already when n = 2 the situation is more complicated as these two

sets are completely different.

Ibukiyama and Katsurada [18] followed the classical Atkin-Lehner the-

ory and for Γ
(2)
0 (N) defined a space of newforms as the orthogonal comple-

ment of

span{F (dZ) : F (Z) ∈ S(2)
k (Γ

(2)
0 (M)), dM |N,M 6= N} ⊂ S

(2)
k (Γ

(2)
0 (N)) ,

(5.4)

so that the space (5.4) is the image of the U(d) operators on S
(2)
k (Γ

(2)
0 (M))

with dM |N . However, it is not clear why this space should be favoured as

the space of newforms.

Roberts and Schmidt [45] gave a local picture on this subject in case of

Γpara(N). Instead of looking at the description of the classical newforms by

the Fourier coefficients, they focused on their characterisation as certain

vectors in the space of representations of GL2(F ) over a local field F . In

this language the classical oldforms are obtained from the newforms by

applying two level raising Hecke operators and taking linear combinations

of those. In analogy to this characterisation where, in particular, the space

of newforms of a fixed level is one-dimensional, they created a theory of the

local newforms, in which the oldforms arise as an effect of applying three

level raising Hecke operators and taking linear combinations. We should

mention here that if a paramodular form is a newform in this sense, then

it is an eigenfunction of the operators T (p), T (p2), U(p) and µN .

3The orthogonal complement is taken with respect to Petersson inner product. Given

F,G ∈ S(n)
k (Γ) for some congruence subgroup Γ of Sp2n(Z), their Petersson inner prod-

uct is defined to be

(F,G) :=
1

vol(Γ\Hn)

∫
Γ\Hn

F (Z)G(Z) detY k−n−1dXdY .
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5.2 History and motivation

One of the most basic questions one might ask about Siegel modular forms

is their determination by Fourier coefficients. As we mentioned in the in-

troduction, we are not so much interested in the smallest subset of such

coefficients, but rather in a set that might be also interesting from theoret-

ical point of view.

Many results on this topic has resembled the fact that a classical cusp-

idal Hecke eigenform

f(z) =
∞∑
n=1

a(f, n)e2πinz ∈ S(1)
k (SL2(Z))

is determined by the set

{a(f, 1)} ∪ {a(f, p) : p prime} .

If

F (Z) =
∑
T∈Pn

a(F, T )e2πitr (TZ) ∈ S(n)
k (Sp2n(Z)) ,

the analogous condition on the n× n matrices T might be

{a(F, T ) : discT square-free} .

What conditions would we need to put on F so that this could be true?

There are several results that concern Hecke eigenforms of full level (cf.

introduction to [62]). However, none of them goes beyond simplifying the

content of T . Therefore it is worth to note a result due to Zagier [63], which

states that every non-zero Siegel modular form F of level Sp4(Z) is deter-

mined by its primitive Fourier coefficients, i.e. by {a(F, T ) : contT = 1}.
Many years later it was generalised by Yamana both to higher levels and

higher degree:

Theorem 5.2.1 (Yamana; [62]). Let F be a Siegel modular form of degree

n ≥ 2, weight k ≥ 1/2 and level Γ
(n)
0 (N). Assume that a(F, T ) = 0 for all

T ∈ Pn such that contT |N . Then F = 0.

This theorem was used by Ibukiyama and Katsurada [18] who under

an additional assumption that F is in a newspace simplified the set deter-

mining F to {a(F, T ) : contT = 1}. At the same time they showed that

in order to be able to state such a result, the additional assumption was

necessary.
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Another breakthrough was a theorem of Saha [51] who showed, us-

ing Zagier’s theorem, that non-zero cuspidal Siegel modular forms of level

Sp4(Z) are determined by their fundamental Fourier coefficients. Under

additional assumptions and slight modifications of the proof, Saha and

Schmidt obtained a couple of results for modular forms of higher levels.

Theorem 5.2.2 (Saha, Schmidt, [52]; Saha, [49]). Let F be a non-zero

cuspidal Siegel modular form of level Γ
(2)
0 (N) with N square-free, and even

weight k > 2. Assume that one of the following conditions holds.

1. F is an eigenfunction for the U(p) operator for all primes p|N .

2. F is in a new space.

Then, for any 0 < δ < 5/8, one has the lower bound

|{0 < D < X : D square-free, ∃T (a(F, T ) 6= 0, discT = −D}| �F,δ X
δ.

In particular, F has infinitely many non-zero fundamental Fourier coeffi-

cients.

The proofs of both statements are very similar, and the difference in

the assumptions comes from the fact that the first one uses Yamana’s the-

orem, and the second one the theorem due to Ibukiyama and Katsurada.

These assumptions assure the existence of a non-zero primitive Fourier co-

efficient, and thus non-vanishing of a Fourier-Jacobi coefficient of a prime

index. This in turn allows to construct a non-zero modular form of half-

integral weight that satisfies the conditions of Theorem 5.1.2 (Theorem

5.1.3 was not known then), and eventually implies non-vanishing of fun-

damental Fourier coefficients. Here very helpful are the theorems due to

Eichler, Zagier and Manickam, Ramakrishnan mentioned in Section 5.1.2,

which guarantee that the constructed function is indeed a modular form of

half-integral weight of the prescribed level. The lack of these or non-square-

free index of a Jacobi form make it very hard to use the key Theorem 5.1.2

for this method.

In the case of paramodular forms of level N it is always the case that

the index of Fourier-Jacobi coefficients is divisible by N . Hence, unless a

paramodular form is twisted by a suitable character and N is not divisible

by cubes (cf. Theorem 5.1.1, 5.1.2 and the remark below them), it seems

impossible to take this approach. On the other hand, there is no Yamana-

like result in this situation, that is, there is no result that ensures the

existence of a(F, T ) 6= 0 with the content of T divisible by at most finitely
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many fixed prime numbers. Nevertheless, under an additional assumption

that a paramodular form F of square-free level is an eigenform of certain

Hecke operators, we prove in the next section that F has infinitely many

non-zero fundamental Fourier coefficients.

5.3 Non-vanishing of fundamental Fourier

coefficients

We state first our main theorem.

Theorem 5.3.1. Let 0 6= F ∈ S
(2)
k (Γpara(N)), with k ≥ 2 even and N

square-free, be an eigenfunction of the operators T (p) + T (p2) for primes

p - N , U(p) for p | N and µN . Then F has infinitely many nonzero

fundamental Fourier coefficients.

Remark. In particular, Theorem 5.3.1 holds for paramodular newforms.

The proof follows the strategy discussed at the end of the previous

section. First we prove that F has a non-zero primitive Fourier coefficient.

Then we construct a modular form of half-integral weight and use Theorems

5.1.2, 5.1.3.

Remark. As we noted at the end of Section 5.1.1 the information on exis-

tence of a non-zero primitive Fourier coefficient cannot be obtained from

Theorem 4.3.1 as the coefficients a(F, T ) that occur there are supported on⋃
d,M,LH1(dM2, L; Γ0(N)). In some cases one may Siegelise a paramodular

form (cf. Definition 4.13 and propositions below) and be able to use e.g.

Yamana’s theorem. However, this relies on the assumption that Siegelisa-

tion gives a non-zero Siegel modular form, which is not always the case (cf.

Remark at the end of Section 4.4).

Lemma 5.3.1. Let F ∈ S
(2)
k (Γpara(N)) be a nonzero paramodular form

and p||N be a prime. If F is an eigenform of the U(p) operator with an

eigenvalue λ, then the coefficients of F satisfy the following equality:

λa(F, T ) = p−k+3a(F, p T ) + pka

(
F,

1

p
T

)
(5.5)

− a

(
F,

1

p

(
αp 1

−Nβ p

)
T

(
αp −Nβ
1 p

))

(if p|m) + p
∑

b∈Z/pZ

a

(
F,

1

p

(
1 b

p

)
T

(
1

b p

))
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(if p|n) + (−1)kp
∑

b∈Z/pZ

a

(
F,

1

p

(
p

−bN −1

)
T

(
p −bN
−1

))

(if p|r) + pa

(
F,

1

p

(
αp 1

−Nβ p

)
T

(
αp −Nβ
1 p

))
,

where T =
(

n r/2
r/2 mN

)
, and α, β ∈ Z are such that αp2 + βN = p. (We take

the convention a
(
F, 1

p
X
)

:= 0, if p - cont (X).)

Proof. Lemma 6.1.2 of [45] gives coset representatives at the place p of the

double coset defining the operator U(p),4

P02

(
I2

pI2

)
P02 =

∐
a,b,c∈Z/pZ

P02

(
1

1
p
p

)(
1 a b

1 b c/p
1

1

)

t
∐

a,c∈Z/pZ

P02

( p
1

1
p

)(
1
−a 1 c/p

1 a
1

)

t
∐

a,b∈Z/pZ

P02

(
1

1
p
p

)(
1 a b

1 b
1

1

)(
1

1/p
1

−p

)

t
∐

a∈Z/pZ

P02

( p
1

1
p

)(
1
−a 1

1 a
1

)(
1

1/p
1

−p

)

In fact, we can exchange a matrix

(
1

1/p
1

−p

)
above by

(
1

1/N
1

−N

)
,

and that will give us the same coset representatives. Moreover, at the

place q 6= p, P02

(
I2

pI2

)
P02 = P02, so using Chinese remainder theorem,

we can choose:

Γpara(N)
(
I2

pI2

)
Γpara(N)

=
∐

a,b,c∈Z/pZ

Γpara(N)

(
1

1
p
p

)(
1 a b

1 b c/p
1

1

)

t
∐

a,c∈Z/pZ

Γpara(N)

( p
1

1
p

)(
1
−a 1 c/p

1 a
1

)

t
∐

a,b∈Z/pZ

Γpara(N)

(
1

1
p
p

)(
1 a b

1 b
1

1

)(
1

1/N
1

−N

)

t
∐

a∈Z/pZ

Γpara(N)

( p
1

1
p

)(
1
−a 1

1 a
1

)(
1

1/N
1

−N

)
.

Using the invariance of F under the action of the paramodular group

4The coset representatives obtained in [45] are adjusted to our (classical) definition
of P02.
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Γpara(N), the coset representatives of Γpara(N)
(
I2

pI2

)
Γpara(N) act on F in

the following way (unless stated otherwise, a matrix T occurring in the

summand is of the form
(

n r/2
r/2 mN

)
):

F |k
∐

a,b,c∈Z/pZ

Γpara(N)

(
1

1
p
p

)(
1 a b

1 b c/p
1

1

)
(Z)

= p−k
∑

a,b,c∈Z/pZ

F

(
1

p
Z +

1

p

(
a b
b c/p

))

= p−k
∑
T

a(F, T )e

(
tr

(
1

p
TZ

)) ∑
a,b,c∈Z/pZ

e

(
na

p

)
e

(
rb

p

)
e

(
mNc

p2

)

= p−k+3
∑
T

p|n,m,r

a(F, T )e

(
tr

(
1

p
TZ

))

= p−k+3
∑
T

a(F, pT )e(tr (TZ)) ,

F |k
∐

a,c∈Z/pZ

Γpara(N)

( p
1

1
p

)(
1
−a 1 c/p

1 a
1

)
(Z)

=
∑

a,c∈Z/pZ

F

(((
p
−a 1

)
Z +

(
0
c/p

)) 1

p
( p −a1 )

)

=
∑
T

a(F, T )
∑

a∈Z/pZ

e

(
tr

(
1

p
( p −a1 )T ( p

−a 1 )Z

))

·
∑

c∈Z/pZ

e

(
tr

(
1

p
( p −a1 )T

(
0
c/p

)))

= p
∑
T
p|m

∑
a∈Z/pZ

a

(
F,

1

p

(
1 a
p

)
T
(

1
a p

))
e(tr (TZ)) ,

F|k
∐

a,b∈Z/pZ

Γpara(N)

(
1

1
p
p

)(
1 a b

1 b
1

1

)(
1

1/N
1

−N

)
(Z)

=
∑

a,b∈Z/pZ

(
F|k

(
1

1/N
1

−N

)( 1 −bN a
b 1/N
p

−pN

))
(Z)

=
∑

a,b∈Z/pZ

(
F|k

(
1 −bN a
−p

p
−bN −1

))
(Z)

= (−1)k
∑

a,b∈Z/pZ

∑
T

a(F, T )e
(

tr
(

(
p
−bN −1 )

−1
T
((

1 −bN
−p
)
Z + ( a 0 )

)))
= (−1)k

∑
b∈Z/pZ

∑
T

a(F, T )e
(

tr
(

(
p
−bN −1 )

−1
T
(

1 −bN
−p
)
Z
))∑
a∈Z/pZ

e

(
na

p

)

= p(−1)k
∑
T
p|n

∑
b∈Z/pZ

a

(
F,

1

p
(

p
−bN −1 )T

(
p −bN
−1

))
e(tr (TZ)) ,
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F |k
∐

a∈Z/pZ

Γpara(N)

( p
1

1
p

)(
1
−a 1

1 a
1

)(
1

1/N
1

−N

)
(Z)

= F |k
( p

1/N
1

−pN

)
(Z) +

∑
a∈(Z/pZ)×

F |k
( p
−a 1/N
−aN 1
−pN

)
(Z) .

Before we can proceed further, we should investigate the case a 6= 0. We

want to construct a matrix g ∈ Γpara(N) so that if we substitute F |kg in

place of F |k and consider the action of the above coset representative, we

will obtain a Siegel parabolic matrix5. Let ā := a−1 mod p and α, β ∈ Z

such that αp2 + βN = p (the existence of α, β follows from the assumption

that p2 - N), and put

g :=


1 −βā β(aā− 1)/p

(aā− 1)/p ā −α/N
aN/p N αp −αa
Na Np −Nβ Nβa/p

 .

One can easily check that g ∈ Γpara(N). Now that

g


p

−a 1/N

−aN 1

−pN

 =


p Nβ −βā
−1 αp ā/N

αp 1

−Nβ p

 ,

we are ready to determine the action of the coset representatives of the last

type on F . Namely, the terms above can be written as:

F |k
(

1
−1/N

1
N

)( p
1/N

1
−pN

)
(Z) +

∑
a∈(Z/pZ)×

F |kg
( p
−a 1/N
−aN 1
−pN

)
(Z)

= F |k
(
p
p

1
1

)
(Z) +

∑
a∈(Z/pZ)×

F |k

(
p Nβ −βā
−1 αp ā/N

αp 1
−Nβ p

)
(Z)

= pkF (pZ) +
∑

a∈(Z/pZ)×

F
(((

p Nβ
−1 αp

)
Z +

(
−βā

ā/N

)) (
αp 1
−Nβ p

)−1
)

(Z)

= pkF (pZ) +
∑

a∈(Z/pZ)×

∑
T

a(F, T )e
(

tr
((

αp 1
−Nβ p

)−1
T
(
p Nβ
−1 αp

)
Z
))

· e
(

tr

(
ā

p

(
n r/2
r/2 mN

)(
−β

1/N

) (
p −1
Nβ αp

)))

5One can easily check that such a matrix g does not exist if p2|N .
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= pkF (pZ) +
∑
T

a(F, T )e
(

tr
((

αp 1
−Nβ p

)−1
T
(
p Nβ
−1 αp

)
Z
))

·
∑

a∈(Z/pZ)×

e

(
āβr

p

)

= pk
∑
T

a

(
F,

1

p
T

)
e(tr (TZ))

+
∑
T

∑
a∈(Z/pZ)×

e

(
aβr

p

)
a

(
F,

1

p

(
αp 1
−Nβ p

)
T
(
αp −Nβ
1 p

))
e(tr (TZ)) .

Hence, because F |kU(p) = λF , we obtain the equality

λa(F, T ) = p−k+3a(F, p T ) + pka

(
F,

1

p
T

)
− a

(
F,

1

p

(
αp 1

−Nβ p

)
T

(
αp −Nβ
1 p

))

(if p|m) + p
∑

b∈Z/pZ

a

(
F,

1

p

(
1 b

p

)
T

(
1

b p

))

(if p|n) + (−1)kp
∑

b∈Z/pZ

a

(
F,

1

p

(
p

−bN −1

)
T

(
p −bN
−1

))

(if p|r) + pa

(
F,

1

p

(
αp 1

−Nβ p

)
T

(
αp −Nβ
1 p

))
,

where α, β ∈ Z are such that αp2 + βN = p.

Thanks to Lemma 5.3.1 we will be able to prove that F has a non-zero

coefficient a(F, T ) with gcd(contT,N) = 1. To get a non-zero primitive

Fourier coefficient, we need to investigate the action of Hecke operators at

p - N . It turns out that the following result due to Evdokimov will be

enough6.

Proposition 5.3.2 (Evdokimov; [13]). Let F ∈ S
(2)
k (Γpara(N)). Assume

that F |kT (p) + T (p2) = λF . Then, using the notation of [13], the Fourier

coefficients of F satisfy the relation

λa(F, T ) = a(F, pT ) + p2k−3a

(
F,

1

p
T

)
(5.6)

6Evdokimov considered Siegel modular forms with respect to principal congruence
subgroup, but the Hecke algebras coincide at primes not dividing N .
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+ pk−2
∑

U∈R(N)⊆Γ0(N)

a

(
F,

1

p

(
1
p

)
UT tU

(
1
p

))
.

Lemma 5.3.3. Let F ∈ S(2)
k (Γpara(N)) be a nonzero paramodular form of

square-free level N that is an eigenform of the operators T (p) + T (p2) and

U(p) for all primes p. Then there exists a primitive matrix S for which

a(F, S) 6= 0.

Proof. This follows from close observation of behaviour of Fourier coeffi-

cients under the action of operators U(p) and T (p) + T (p2), relations (5.5)

and (5.6). Let A be the set of matrices S such that a(F, S) 6= 0. Let S ′

be the matrix in A whose discriminant is smallest. We claim that S ′ is

primitive. If not, say p | contS and S = pT , then, using the relations

(5.5) and (5.6), we can find another matrix S ′′ ∈ A whose discriminant is

smaller than discS ′. Indeed, note that every coefficient occurring in (5.5)

and (5.6), except a(F, pT ), has a discriminant that divides discT . This

leads to a contradiction.

Now, having established the existence of a primitive matrix S for which

a(F, S) 6= 0, we can move to the second part of the proof of Theorem 5.3.1.

Lemma 5.3.4. Let F ∈ S(2)
k (Γpara(N)) be an eigenfunction of the operator

µN . Assume that there is a primitive matrix S =
(

n r/2
r/2 Nm

)
such that

a(F, S) 6= 0. Then there exists an odd prime p not dividing N for which

φNp 6= 0.

Proof. We will use the properties (5.2) and (5.3) of Fourier coefficients

listed above. Let

S ′ :=

(
m −r/2
−r/2 Nn

)
and A :=

(
a Nc

b d

)
∈ Γ0(N) .

Then

a(F, tAS ′A) = a(F, S ′) = εa(F, S) 6= 0

and the right bottom entry of AS ′ tA is N(c2Nm − cdr + d2n). Because

gcd(n, r,Nm) = 1, the form c2Nm − cdr + d2n represents infinitely many

primes ([61]). Let c, d ∈ Z be such that we obtain an odd prime p not

dividing N . Then gcd(cN, d) = 1, so we can find a, b so that A ∈ SL2(Z).

Hence, φNp 6= 0.

After all that preparation, the proof of Theorem 5.3.1 will be very short:
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Proof. We know from Lemma 5.3.3 and 5.3.4 that there exists an odd prime

p - N such that φNp 6≡ 0. Define

h(τ) :=
∞∑
D=1

∑
0≤r<2Np

r2≡−D(mod 4Np)

a

(
F,

(
D+r2

4Np
r/2

r/2 Np

))
e(Dτ) =

∞∑
D=1

a(h,D)e(Dτ) .

By Theorem 5.1.1, 0 6= h ∈ Mk−1/2(4Np). Hence, by Lemma 5.3.4 and

Theorems 5.1.2, 5.1.3, there are infinitely many square-free D for which

a(h,D) 6= 0. For each suchD there exists r such that a
(
F,
(

D+r2

4Np
r/2

r/2 Np

))
6= 0.
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